关于度量空间中的稠密子集

Pub Date : 2021-04-26 DOI:10.4064/cm8580-9-2021
Yoshito Ishiki
{"title":"关于度量空间中的稠密子集","authors":"Yoshito Ishiki","doi":"10.4064/cm8580-9-2021","DOIUrl":null,"url":null,"abstract":"In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On dense subsets in spaces of metrics\",\"authors\":\"Yoshito Ishiki\",\"doi\":\"10.4064/cm8580-9-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8580-9-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8580-9-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在度量空间中,我们研究了David—Semmes定理中出现的拟对称不变性质——加倍性、一致不连通性和一致完备性的拓扑分布。证明了在有限维和零维紧化可度量空间的度量空间中,所有加倍度量的集合和所有一致不连通度量的集合是密集的。相反,集合的这种密集性意味着可度量空间的有限维性、零维性和紧性。我们还确定了所有一致完美度量集合在康托集度量空间中的拓扑分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On dense subsets in spaces of metrics
In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信