{"title":"关于度量空间中的稠密子集","authors":"Yoshito Ishiki","doi":"10.4064/cm8580-9-2021","DOIUrl":null,"url":null,"abstract":"In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On dense subsets in spaces of metrics\",\"authors\":\"Yoshito Ishiki\",\"doi\":\"10.4064/cm8580-9-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8580-9-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8580-9-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In spaces of metrics, we investigate topological distributions of the doubling property, the uniform disconnectedness, and the uniform perfectness, which are the quasi-symmetrically invariant properties appearing in the David--Semmes theorem. We show that the set of all doubling metrics and the set of all uniformly disconnected metrics are dense in spaces of metrics on finite-dimensional and zero-dimensional compact metrizable spaces, respectively. Conversely, this denseness of the sets implies the finite-dimensionality, zero-dimensionality, and the compactness of metrizable spaces. We also determine the topological distribution of the set of all uniformly perfect metrics in the space of metrics on the Cantor set.