铸件凝固过程的结构和模具材料分析

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING
O. Prikhodko, V. Deev, A. Kutsenko, E. Prusov
{"title":"铸件凝固过程的结构和模具材料分析","authors":"O. Prikhodko, V. Deev, A. Kutsenko, E. Prusov","doi":"10.17580/cisisr.2023.01.06","DOIUrl":null,"url":null,"abstract":"Control of the formation of the structure and specified properties of castings in foundry production processes is inextricably linked to the thermal conditions of solidification of the castings in the mold. The nature of the thermal interaction between the casting and the mold is largely determined by the configuration of the castings as well as the properties of the cast alloy and mold material. The analysis performed in this work shows that the numerical models and empirical formulas used to calculate casting solidification parameters can be divided into three groups. The first group of models and empirical formulas gives values approaching the results of calculations by the square root law. The second group includes models and formulas, the calculation of solidified skin thickness by which exceeds the results of calculations by the square root law. The third group includes models and empirical formulas, which provide calculated data close to the theoretical curves of solidification of classical bodies. According to the results of the analysis of calculated data on the basis of the considered models, a hypothetical mechanism of the solidification process of castings has been proposed, which explains the stages of formation of their structure and the nature of the deviation of experimentally obtained values of solidification parameters from the square root law.","PeriodicalId":10210,"journal":{"name":"CIS Iron and Steel Review","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the solidification process of castings depending on their configuration and material of the mold\",\"authors\":\"O. Prikhodko, V. Deev, A. Kutsenko, E. Prusov\",\"doi\":\"10.17580/cisisr.2023.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of the formation of the structure and specified properties of castings in foundry production processes is inextricably linked to the thermal conditions of solidification of the castings in the mold. The nature of the thermal interaction between the casting and the mold is largely determined by the configuration of the castings as well as the properties of the cast alloy and mold material. The analysis performed in this work shows that the numerical models and empirical formulas used to calculate casting solidification parameters can be divided into three groups. The first group of models and empirical formulas gives values approaching the results of calculations by the square root law. The second group includes models and formulas, the calculation of solidified skin thickness by which exceeds the results of calculations by the square root law. The third group includes models and empirical formulas, which provide calculated data close to the theoretical curves of solidification of classical bodies. According to the results of the analysis of calculated data on the basis of the considered models, a hypothetical mechanism of the solidification process of castings has been proposed, which explains the stages of formation of their structure and the nature of the deviation of experimentally obtained values of solidification parameters from the square root law.\",\"PeriodicalId\":10210,\"journal\":{\"name\":\"CIS Iron and Steel Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIS Iron and Steel Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17580/cisisr.2023.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIS Iron and Steel Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17580/cisisr.2023.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the solidification process of castings depending on their configuration and material of the mold
Control of the formation of the structure and specified properties of castings in foundry production processes is inextricably linked to the thermal conditions of solidification of the castings in the mold. The nature of the thermal interaction between the casting and the mold is largely determined by the configuration of the castings as well as the properties of the cast alloy and mold material. The analysis performed in this work shows that the numerical models and empirical formulas used to calculate casting solidification parameters can be divided into three groups. The first group of models and empirical formulas gives values approaching the results of calculations by the square root law. The second group includes models and formulas, the calculation of solidified skin thickness by which exceeds the results of calculations by the square root law. The third group includes models and empirical formulas, which provide calculated data close to the theoretical curves of solidification of classical bodies. According to the results of the analysis of calculated data on the basis of the considered models, a hypothetical mechanism of the solidification process of castings has been proposed, which explains the stages of formation of their structure and the nature of the deviation of experimentally obtained values of solidification parameters from the square root law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIS Iron and Steel Review
CIS Iron and Steel Review METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
2.50
自引率
12.50%
发文量
21
期刊介绍: “CIS Iron and Steel Review” is the only Russian metallurgical scientific-technical journal in English, publishing materials about whole spectrum of the problems, innovations and news of foreign iron and steel industry. The mission of this edition is to make foreign specialists aware about scientific and technical researches and development in iron and steel industry in the former USSR countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信