黎曼函数的级数表示和一些有趣的恒等式

M. Milgram
{"title":"黎曼函数的级数表示和一些有趣的恒等式","authors":"M. Milgram","doi":"10.7153/jca-2021-17-09","DOIUrl":null,"url":null,"abstract":"Using Cauchy's Integral Theorem as a basis, what may be a new series representation for Dirichlet's function $\\eta(s)$, and hence Riemann's function $\\zeta(s)$, is obtained in terms of the Exponential Integral function $E_{s}(i\\kappa)$ of complex argument. From this basis, infinite sums are evaluated, unusual integrals are reduced to known functions and interesting identities are unearthed. The incomplete functions $\\zeta^{\\pm}(s)$ and $\\eta^{\\pm}(s)$ are defined and shown to be intimately related to some of these interesting integrals. An identity relating Euler, Bernouli and Harmonic numbers is developed. It is demonstrated that a known simple integral with complex endpoints can be utilized to evaluate a large number of different integrals, by choosing varying paths between the endpoints.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A series representation for Riemann's zeta function and some interesting identities that follow\",\"authors\":\"M. Milgram\",\"doi\":\"10.7153/jca-2021-17-09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Cauchy's Integral Theorem as a basis, what may be a new series representation for Dirichlet's function $\\\\eta(s)$, and hence Riemann's function $\\\\zeta(s)$, is obtained in terms of the Exponential Integral function $E_{s}(i\\\\kappa)$ of complex argument. From this basis, infinite sums are evaluated, unusual integrals are reduced to known functions and interesting identities are unearthed. The incomplete functions $\\\\zeta^{\\\\pm}(s)$ and $\\\\eta^{\\\\pm}(s)$ are defined and shown to be intimately related to some of these interesting integrals. An identity relating Euler, Bernouli and Harmonic numbers is developed. It is demonstrated that a known simple integral with complex endpoints can be utilized to evaluate a large number of different integrals, by choosing varying paths between the endpoints.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2021-17-09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2021-17-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以柯西积分定理为基础,根据复变元的指数积分函数$E_{s}(i \ kappa)$,得到了狄利克雷函数$\eta(s)$的一个新的级数表示,从而得到了黎曼函数$\ζ(s)$。在此基础上,对无穷和进行了评估,将异常积分简化为已知函数,并发现了有趣的恒等式。定义了不完备函数$\zeta^{\pm}(s)$和$\eta^{\ pm}(s)$,并证明它们与这些有趣的积分密切相关。建立了欧拉数、伯努利数和调和数的一个恒等式。证明了已知的具有复杂端点的简单积分可以通过选择端点之间的变化路径来评估大量不同的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A series representation for Riemann's zeta function and some interesting identities that follow
Using Cauchy's Integral Theorem as a basis, what may be a new series representation for Dirichlet's function $\eta(s)$, and hence Riemann's function $\zeta(s)$, is obtained in terms of the Exponential Integral function $E_{s}(i\kappa)$ of complex argument. From this basis, infinite sums are evaluated, unusual integrals are reduced to known functions and interesting identities are unearthed. The incomplete functions $\zeta^{\pm}(s)$ and $\eta^{\pm}(s)$ are defined and shown to be intimately related to some of these interesting integrals. An identity relating Euler, Bernouli and Harmonic numbers is developed. It is demonstrated that a known simple integral with complex endpoints can be utilized to evaluate a large number of different integrals, by choosing varying paths between the endpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信