将积图分解为8阶的太阳图

Q3 Mathematics
K. Sowndhariya, A. Muthusamy
{"title":"将积图分解为8阶的太阳图","authors":"K. Sowndhariya, A. Muthusamy","doi":"10.13069/JACODESMATH.867617","DOIUrl":null,"url":null,"abstract":"For any integer $k\\geq 3$ , we define sunlet graph of order $2k$, denoted by $L_{2k}$, as the graph consisting of a cycle of length $k$ together with $k$ pendant vertices, each adjacent to exactly one vertex of the cycle. In this paper, we give necessary and sufficient conditions for the existence of $L_{8}$-decomposition of tensor product and wreath product of complete graphs.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decomposition of product graphs into sunlet graphs of order eight\",\"authors\":\"K. Sowndhariya, A. Muthusamy\",\"doi\":\"10.13069/JACODESMATH.867617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any integer $k\\\\geq 3$ , we define sunlet graph of order $2k$, denoted by $L_{2k}$, as the graph consisting of a cycle of length $k$ together with $k$ pendant vertices, each adjacent to exactly one vertex of the cycle. In this paper, we give necessary and sufficient conditions for the existence of $L_{8}$-decomposition of tensor product and wreath product of complete graphs.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.867617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.867617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

对于任意整数$k\geq 3$,我们定义阶为$2k$的太阳波图,用$L_{2k}$表示,作为由长度为$k$的循环和$k$的垂顶点组成的图,每个垂顶点恰好与循环的一个顶点相邻。本文给出了完全图的张量积和环积$L_{8}$ -分解存在的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of product graphs into sunlet graphs of order eight
For any integer $k\geq 3$ , we define sunlet graph of order $2k$, denoted by $L_{2k}$, as the graph consisting of a cycle of length $k$ together with $k$ pendant vertices, each adjacent to exactly one vertex of the cycle. In this paper, we give necessary and sufficient conditions for the existence of $L_{8}$-decomposition of tensor product and wreath product of complete graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信