{"title":"基于优化IMCRA的麦克风阵列语音增强","authors":"Qiuying Li, Tao Zhang, Yanzhang Geng, Zhenke Gao","doi":"10.3397/1/376944","DOIUrl":null,"url":null,"abstract":"Microphone array speech enhancement algorithm uses temporal and spatial informa- tion to improve the performance of speech noise reduction significantly. By combining noise estimation algorithm with microphone array speech enhancement, the accuracy of noise estimation is improved, and\n the computation is reduced. In traditional noise es- timation algorithms, the noise power spectrum is not updated in the presence of speech, which leads to the delay and deviation of noise spectrum estimation. An optimized im- proved minimum controlled recursion average speech enhancement\n algorithm, based on a microphone matrix is proposed in this paper. It consists of three parts. The first part is the preprocessing, divided into two branches: the upper branch enhances the speech signal, and the lower branch gets the noise. The second part is the optimized improved minimum\n controlled recursive averaging. The noise power spectrum is updated not only in the non-speech segments but also in the speech segments. Fi- nally, according to the estimated noise power spectrum, the minimum mean-square error log-spectral amplitude algorithm is used to enhance speech. Testing\n data are from TIMIT and Noisex-92 databases. Short-time objective intelligibility and seg- mental signal-to-noise ratio are chosen as evaluation metrics. Experimental results show that the proposed speech enhancement algorithm can improve the segmental signal-to-noise ratio and short-time\n objective intelligibility for various noise types at different signal-to-noise ratio levels.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microphone array speech enhancement based on optimized IMCRA\",\"authors\":\"Qiuying Li, Tao Zhang, Yanzhang Geng, Zhenke Gao\",\"doi\":\"10.3397/1/376944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microphone array speech enhancement algorithm uses temporal and spatial informa- tion to improve the performance of speech noise reduction significantly. By combining noise estimation algorithm with microphone array speech enhancement, the accuracy of noise estimation is improved, and\\n the computation is reduced. In traditional noise es- timation algorithms, the noise power spectrum is not updated in the presence of speech, which leads to the delay and deviation of noise spectrum estimation. An optimized im- proved minimum controlled recursion average speech enhancement\\n algorithm, based on a microphone matrix is proposed in this paper. It consists of three parts. The first part is the preprocessing, divided into two branches: the upper branch enhances the speech signal, and the lower branch gets the noise. The second part is the optimized improved minimum\\n controlled recursive averaging. The noise power spectrum is updated not only in the non-speech segments but also in the speech segments. Fi- nally, according to the estimated noise power spectrum, the minimum mean-square error log-spectral amplitude algorithm is used to enhance speech. Testing\\n data are from TIMIT and Noisex-92 databases. Short-time objective intelligibility and seg- mental signal-to-noise ratio are chosen as evaluation metrics. Experimental results show that the proposed speech enhancement algorithm can improve the segmental signal-to-noise ratio and short-time\\n objective intelligibility for various noise types at different signal-to-noise ratio levels.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/376944\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/376944","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Microphone array speech enhancement based on optimized IMCRA
Microphone array speech enhancement algorithm uses temporal and spatial informa- tion to improve the performance of speech noise reduction significantly. By combining noise estimation algorithm with microphone array speech enhancement, the accuracy of noise estimation is improved, and
the computation is reduced. In traditional noise es- timation algorithms, the noise power spectrum is not updated in the presence of speech, which leads to the delay and deviation of noise spectrum estimation. An optimized im- proved minimum controlled recursion average speech enhancement
algorithm, based on a microphone matrix is proposed in this paper. It consists of three parts. The first part is the preprocessing, divided into two branches: the upper branch enhances the speech signal, and the lower branch gets the noise. The second part is the optimized improved minimum
controlled recursive averaging. The noise power spectrum is updated not only in the non-speech segments but also in the speech segments. Fi- nally, according to the estimated noise power spectrum, the minimum mean-square error log-spectral amplitude algorithm is used to enhance speech. Testing
data are from TIMIT and Noisex-92 databases. Short-time objective intelligibility and seg- mental signal-to-noise ratio are chosen as evaluation metrics. Experimental results show that the proposed speech enhancement algorithm can improve the segmental signal-to-noise ratio and short-time
objective intelligibility for various noise types at different signal-to-noise ratio levels.
期刊介绍:
NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE).
NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes.
INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ:
Provides the opportunity to reach a global audience of NCE professionals, academics, and students;
Enhances the prestige of your work;
Validates your work by formal peer review.