尺寸和空位缺陷对亚砷酸纳米片屈曲性能的影响

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenyu Sun, Guili Liu, Juan Guo
{"title":"尺寸和空位缺陷对亚砷酸纳米片屈曲性能的影响","authors":"Zhenyu Sun, Guili Liu, Juan Guo","doi":"10.1080/09500839.2022.2140216","DOIUrl":null,"url":null,"abstract":"ABSTRACT Vacancy defects and size variations are inevitable in the preparation of arsenene nanosheets, and the effect of size and random distribution of vacancy defects on the buckling properties of arsenene nanosheets is not negligible. Previous research methods, such as molecular dynamics, have limitations in terms of computational cost when investigating this aspect. In this paper, a model of arsenene nanosheets is developed based on the finite element method and the buckling properties of arsenene nanosheets are investigated under various operating conditions such as different sizes, different orientations and the presence of vacancy defects. The results show that the buckling performance of arsenene nanosheets is enhanced by smaller size. In contrast, the presence of vacancy defects leads to the destruction of the original structure of arsenene nanosheets, resulting in a decrease in their buckling properties. This study provides an important contribution to the investigation of the buckling properties of arsenene nanosheets.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"378 - 395"},"PeriodicalIF":1.2000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of size and vacancy defects on buckling properties of arsenene nanosheets\",\"authors\":\"Zhenyu Sun, Guili Liu, Juan Guo\",\"doi\":\"10.1080/09500839.2022.2140216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Vacancy defects and size variations are inevitable in the preparation of arsenene nanosheets, and the effect of size and random distribution of vacancy defects on the buckling properties of arsenene nanosheets is not negligible. Previous research methods, such as molecular dynamics, have limitations in terms of computational cost when investigating this aspect. In this paper, a model of arsenene nanosheets is developed based on the finite element method and the buckling properties of arsenene nanosheets are investigated under various operating conditions such as different sizes, different orientations and the presence of vacancy defects. The results show that the buckling performance of arsenene nanosheets is enhanced by smaller size. In contrast, the presence of vacancy defects leads to the destruction of the original structure of arsenene nanosheets, resulting in a decrease in their buckling properties. This study provides an important contribution to the investigation of the buckling properties of arsenene nanosheets.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"378 - 395\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2022.2140216\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2022.2140216","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要在制备亚砷酸纳米片的过程中,空位缺陷和尺寸变化是不可避免的,空位缺陷的尺寸和随机分布对亚砷酸纳米片屈曲性能的影响不容忽视。以前的研究方法,如分子动力学,在研究这一方面时,在计算成本方面存在局限性。本文基于有限元方法建立了亚砷酸纳米片的模型,研究了亚砷酸纳米片在不同尺寸、不同取向和存在空位缺陷等不同操作条件下的屈曲性能。结果表明,尺寸越小,亚砷酸纳米片的屈曲性能越强。相反,空位缺陷的存在会破坏亚砷酸纳米片的原始结构,导致其屈曲性能下降。这项研究为研究亚砷酸纳米片的屈曲性能提供了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of size and vacancy defects on buckling properties of arsenene nanosheets
ABSTRACT Vacancy defects and size variations are inevitable in the preparation of arsenene nanosheets, and the effect of size and random distribution of vacancy defects on the buckling properties of arsenene nanosheets is not negligible. Previous research methods, such as molecular dynamics, have limitations in terms of computational cost when investigating this aspect. In this paper, a model of arsenene nanosheets is developed based on the finite element method and the buckling properties of arsenene nanosheets are investigated under various operating conditions such as different sizes, different orientations and the presence of vacancy defects. The results show that the buckling performance of arsenene nanosheets is enhanced by smaller size. In contrast, the presence of vacancy defects leads to the destruction of the original structure of arsenene nanosheets, resulting in a decrease in their buckling properties. This study provides an important contribution to the investigation of the buckling properties of arsenene nanosheets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine Letters
Philosophical Magazine Letters 物理-物理:凝聚态物理
CiteScore
2.60
自引率
0.00%
发文量
25
审稿时长
2.7 months
期刊介绍: Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate. Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信