{"title":"Lorentz空间中Brascamp-Lieb不等式的锐度","authors":"N. Bez, Sanghyuk Lee, Shohei Nakamura, Y. Sawano","doi":"10.3934/ERA.2017.24.006","DOIUrl":null,"url":null,"abstract":"We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"24 1","pages":"53-63"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sharpness of the Brascamp–Lieb inequality in Lorentz spaces\",\"authors\":\"N. Bez, Sanghyuk Lee, Shohei Nakamura, Y. Sawano\",\"doi\":\"10.3934/ERA.2017.24.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"24 1\",\"pages\":\"53-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2017.24.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2017.24.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Sharpness of the Brascamp–Lieb inequality in Lorentz spaces
We provide necessary conditions for the refined version of the Brascamp-Lieb inequality where the input functions are allowed to belong to Lorentz spaces, thereby establishing the sharpness of the range of Lorentz exponents in the subcritical case. Using similar considerations, some sharp refinements of the Strichartz estimates for the kinetic transport equation are established.
期刊介绍:
Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication.
ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007