随机数据缺失中嵌入缺失数据的模型选择

Pub Date : 2023-04-11 DOI:10.3390/stats6020031
Keiji Takai, Kenichi Hayashi
{"title":"随机数据缺失中嵌入缺失数据的模型选择","authors":"Keiji Takai, Kenichi Hayashi","doi":"10.3390/stats6020031","DOIUrl":null,"url":null,"abstract":"When models are built with missing data, an information criterion is needed to select the best model among the various candidates. Using a conventional information criterion for missing data may lead to the selection of the wrong model when data are not missing at random. Conventional information criteria implicitly assume that any subset of missing-at-random data is also missing at random, and thus the maximum likelihood estimator is assumed to be consistent; that is, it is assumed that the estimator will converge to the true value. However, this assumption may not be practical. In this paper, we develop an information criterion that works even for not-missing-at-random data, so long as the largest missing data set is missing at random. Simulations are performed to show the superiority of the proposed information criterion over conventional criteria.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Selection with Missing Data Embedded in Missing-at-Random Data\",\"authors\":\"Keiji Takai, Kenichi Hayashi\",\"doi\":\"10.3390/stats6020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When models are built with missing data, an information criterion is needed to select the best model among the various candidates. Using a conventional information criterion for missing data may lead to the selection of the wrong model when data are not missing at random. Conventional information criteria implicitly assume that any subset of missing-at-random data is also missing at random, and thus the maximum likelihood estimator is assumed to be consistent; that is, it is assumed that the estimator will converge to the true value. However, this assumption may not be practical. In this paper, we develop an information criterion that works even for not-missing-at-random data, so long as the largest missing data set is missing at random. Simulations are performed to show the superiority of the proposed information criterion over conventional criteria.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当使用缺失数据构建模型时,需要一个信息标准来从各种候选模型中选择最佳模型。当数据不是随机丢失时,使用传统的信息准则来处理丢失数据可能会导致选择错误的模型。传统的信息准则隐含地假设随机缺失数据的任何子集也是随机缺失的,因此假设最大似然估计量是一致的;也就是说,假设估计量收敛于真值。然而,这种假设可能并不实际。在本文中,我们开发了一个信息准则,即使对于非随机缺失的数据,只要最大的缺失数据集是随机缺失的。仿真结果表明,所提出的信息准则优于传统准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Model Selection with Missing Data Embedded in Missing-at-Random Data
When models are built with missing data, an information criterion is needed to select the best model among the various candidates. Using a conventional information criterion for missing data may lead to the selection of the wrong model when data are not missing at random. Conventional information criteria implicitly assume that any subset of missing-at-random data is also missing at random, and thus the maximum likelihood estimator is assumed to be consistent; that is, it is assumed that the estimator will converge to the true value. However, this assumption may not be practical. In this paper, we develop an information criterion that works even for not-missing-at-random data, so long as the largest missing data set is missing at random. Simulations are performed to show the superiority of the proposed information criterion over conventional criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信