{"title":"关于非对称和积现象的几点评述","authors":"I. Shkredov","doi":"10.2140/moscow.2019.8.15","DOIUrl":null,"url":null,"abstract":"Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\\max\\{|AB|, |A+C| \\}$ and $\\max\\{|(A+\\alpha)B|, |A+C|\\}$, $\\alpha \\neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.15","citationCount":"24","resultStr":"{\"title\":\"Some remarks on the asymmetric sum-product phenomenon\",\"authors\":\"I. Shkredov\",\"doi\":\"10.2140/moscow.2019.8.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\\\\max\\\\{|AB|, |A+C| \\\\}$ and $\\\\max\\\\{|(A+\\\\alpha)B|, |A+C|\\\\}$, $\\\\alpha \\\\neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.15\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Some remarks on the asymmetric sum-product phenomenon
Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\max\{|AB|, |A+C| \}$ and $\max\{|(A+\alpha)B|, |A+C|\}$, $\alpha \neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.