{"title":"埃塞俄比亚复兴大坝对下游国家潜在环境影响的综合评价:后视镜中的伊泰普大坝","authors":"K. Morsy, Gaber Abdelatif, M. Mostafa","doi":"10.1177/11786221211041964","DOIUrl":null,"url":null,"abstract":"This article provides a comparative environmental assessment for the Grand Ethiopian Renaissance Dam (GERD) learning from Itaipu dam experience. The article gives a full insight about the potential political and technical concerns that may affect the downstream countries as a result of the construction of GERD and proposed a solution and way forward for the negotiation based on joint collaboration perspective. Based on the analytical comparison conducted between GERD and Itaipu, the results showed that the total annual carbon dioxide (CO2) emissions expected to be released from the GERD during the operation is 3,927 tCO2eq, while other secondary emissions were estimated to be 16.17 tons, mainly of carbon monoxide and nitrogen oxides. Also, the ratio of power generation to reservoir capacity of the GERD was questionable, since Ethiopia has announced that the dam is built only for power generation and that there is no intention to utilize water from the dam reservoir. On the other side, the water quality - represented in turbidity, total suspended solids (TSS), dissolved oxygen (DO), total phosphorus (TP), and chemical oxygen demand (COD) - behind the GERD is expected to deteriorate dramatically. Also, an increase in total nitrogen (TN) is expected to occur depending on human activities. Accordingly, the article discussed thoughtfully the potential adverse impacts of the GERD on downstream countries and the possible mitigation options. The article also extended to discuss proposals for practical solutions that pave the road for joint collaboration between the three countries to achieve a transparent resolution and a fair resources utilization.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comprehensive Assessment for the Potential Environmental Impacts of the Grand Ethiopian Renaissance Dam on the Downstream Countries: Itaipu Dam in the Rearview Mirror\",\"authors\":\"K. Morsy, Gaber Abdelatif, M. Mostafa\",\"doi\":\"10.1177/11786221211041964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a comparative environmental assessment for the Grand Ethiopian Renaissance Dam (GERD) learning from Itaipu dam experience. The article gives a full insight about the potential political and technical concerns that may affect the downstream countries as a result of the construction of GERD and proposed a solution and way forward for the negotiation based on joint collaboration perspective. Based on the analytical comparison conducted between GERD and Itaipu, the results showed that the total annual carbon dioxide (CO2) emissions expected to be released from the GERD during the operation is 3,927 tCO2eq, while other secondary emissions were estimated to be 16.17 tons, mainly of carbon monoxide and nitrogen oxides. Also, the ratio of power generation to reservoir capacity of the GERD was questionable, since Ethiopia has announced that the dam is built only for power generation and that there is no intention to utilize water from the dam reservoir. On the other side, the water quality - represented in turbidity, total suspended solids (TSS), dissolved oxygen (DO), total phosphorus (TP), and chemical oxygen demand (COD) - behind the GERD is expected to deteriorate dramatically. Also, an increase in total nitrogen (TN) is expected to occur depending on human activities. Accordingly, the article discussed thoughtfully the potential adverse impacts of the GERD on downstream countries and the possible mitigation options. The article also extended to discuss proposals for practical solutions that pave the road for joint collaboration between the three countries to achieve a transparent resolution and a fair resources utilization.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221211041964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211041964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Comprehensive Assessment for the Potential Environmental Impacts of the Grand Ethiopian Renaissance Dam on the Downstream Countries: Itaipu Dam in the Rearview Mirror
This article provides a comparative environmental assessment for the Grand Ethiopian Renaissance Dam (GERD) learning from Itaipu dam experience. The article gives a full insight about the potential political and technical concerns that may affect the downstream countries as a result of the construction of GERD and proposed a solution and way forward for the negotiation based on joint collaboration perspective. Based on the analytical comparison conducted between GERD and Itaipu, the results showed that the total annual carbon dioxide (CO2) emissions expected to be released from the GERD during the operation is 3,927 tCO2eq, while other secondary emissions were estimated to be 16.17 tons, mainly of carbon monoxide and nitrogen oxides. Also, the ratio of power generation to reservoir capacity of the GERD was questionable, since Ethiopia has announced that the dam is built only for power generation and that there is no intention to utilize water from the dam reservoir. On the other side, the water quality - represented in turbidity, total suspended solids (TSS), dissolved oxygen (DO), total phosphorus (TP), and chemical oxygen demand (COD) - behind the GERD is expected to deteriorate dramatically. Also, an increase in total nitrogen (TN) is expected to occur depending on human activities. Accordingly, the article discussed thoughtfully the potential adverse impacts of the GERD on downstream countries and the possible mitigation options. The article also extended to discuss proposals for practical solutions that pave the road for joint collaboration between the three countries to achieve a transparent resolution and a fair resources utilization.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.