扩大了满足lipschitz和holder条件的七阶方法的收敛范围

Q1 Mathematics
A. Saxena, J. P. Jai̇swal, Kamal Raj Paradasani̇
{"title":"扩大了满足lipschitz和holder条件的七阶方法的收敛范围","authors":"A. Saxena, J. P. Jai̇swal, Kamal Raj Paradasani̇","doi":"10.53006/rna.1146027","DOIUrl":null,"url":null,"abstract":"The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BROADENING THE CONVERGENCE DOMAIN OF SEVENTH-ORDER METHOD SATISFYING LIPSCHITZ AND HOLDER CONDITIONS\",\"authors\":\"A. Saxena, J. P. Jai̇swal, Kamal Raj Paradasani̇\",\"doi\":\"10.53006/rna.1146027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.\",\"PeriodicalId\":36205,\"journal\":{\"name\":\"Results in Nonlinear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53006/rna.1146027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1146027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在当前的讨论中,通过假设?一阶Fréchet导数属于Lipschitz类。该方法给出了收敛球半径、误差界和解的唯一性。此外,通过考虑Hölder连续性条件,对研究进行了推广。最后,我们使用各种数值例子,包括非线性Hammerstein方程,估计了会聚球的半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BROADENING THE CONVERGENCE DOMAIN OF SEVENTH-ORDER METHOD SATISFYING LIPSCHITZ AND HOLDER CONDITIONS
The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信