Waldhausen K理论的拧松

IF 0.5 Q3 MATHEMATICS
G. Raptis
{"title":"Waldhausen K理论的拧松","authors":"G. Raptis","doi":"10.2140/akt.2022.7.467","DOIUrl":null,"url":null,"abstract":"A devissage--type theorem in algebraic $K$-theory is a statement that identifies the $K$-theory of a Waldhausen category $\\mathscr{C}$ in terms of the $K$-theories of a collection of Waldhausen subcategories of $\\mathscr{C}$ when a devissage condition about the existence of appropriate finite filtrations is satisfied. We distinguish between devissage theorems of \\emph{single type} and of \\emph{multiple type} depending on the number of Waldhausen subcategories and their properties. The main representative examples of such theorems are Quillen's original devissage theorem for abelian categories (single type) and Waldhausen's theorem on spherical objects for more general Waldhausen categories (multiple type). In this paper, we study some general aspects of devissage--type theorems and prove a general devissage theorem of single type and a general devissage theorem of multiple type.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dévissage for Waldhausen K-theory\",\"authors\":\"G. Raptis\",\"doi\":\"10.2140/akt.2022.7.467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A devissage--type theorem in algebraic $K$-theory is a statement that identifies the $K$-theory of a Waldhausen category $\\\\mathscr{C}$ in terms of the $K$-theories of a collection of Waldhausen subcategories of $\\\\mathscr{C}$ when a devissage condition about the existence of appropriate finite filtrations is satisfied. We distinguish between devissage theorems of \\\\emph{single type} and of \\\\emph{multiple type} depending on the number of Waldhausen subcategories and their properties. The main representative examples of such theorems are Quillen's original devissage theorem for abelian categories (single type) and Waldhausen's theorem on spherical objects for more general Waldhausen categories (multiple type). In this paper, we study some general aspects of devissage--type theorems and prove a general devissage theorem of single type and a general devissage theorem of multiple type.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2022.7.467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

代数$K$-理论中的一个偏导型定理是当满足关于适当有限过滤存在的偏导条件时,根据$\mathscr{C}$的一组Waldhausen子范畴的$K$理论来识别Waldhausen$\mathscr{C}$范畴的$K$-理论的一个声明。根据瓦尔德豪森子范畴的数量及其性质,我们区分了单型和多型的偏量定理。这类定理的主要代表性例子是阿贝尔范畴(单类型)的Quillen原始偏差定理和更一般的Waldhausen范畴(多类型)的球形对象的Waldhauser定理。本文研究了偏量-型定理的一些一般方面,证明了一个单型的一般偏量定理和一个多型的一般偏量定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dévissage for Waldhausen K-theory
A devissage--type theorem in algebraic $K$-theory is a statement that identifies the $K$-theory of a Waldhausen category $\mathscr{C}$ in terms of the $K$-theories of a collection of Waldhausen subcategories of $\mathscr{C}$ when a devissage condition about the existence of appropriate finite filtrations is satisfied. We distinguish between devissage theorems of \emph{single type} and of \emph{multiple type} depending on the number of Waldhausen subcategories and their properties. The main representative examples of such theorems are Quillen's original devissage theorem for abelian categories (single type) and Waldhausen's theorem on spherical objects for more general Waldhausen categories (multiple type). In this paper, we study some general aspects of devissage--type theorems and prove a general devissage theorem of single type and a general devissage theorem of multiple type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信