{"title":"无扰动弱可约非极小桥位置","authors":"Jung Hoon Lee","doi":"10.32917/h2022006","DOIUrl":null,"url":null,"abstract":"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unperturbed weakly reducible non-minimal bridge positions\",\"authors\":\"Jung Hoon Lee\",\"doi\":\"10.32917/h2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2022006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2022006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.