{"title":"无扰动弱可约非极小桥位置","authors":"Jung Hoon Lee","doi":"10.32917/h2022006","DOIUrl":null,"url":null,"abstract":"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unperturbed weakly reducible non-minimal bridge positions\",\"authors\":\"Jung Hoon Lee\",\"doi\":\"10.32917/h2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2022006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2022006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.
期刊介绍:
Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970).
Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.