无扰动弱可约非极小桥位置

Pub Date : 2022-01-25 DOI:10.32917/h2022006
Jung Hoon Lee
{"title":"无扰动弱可约非极小桥位置","authors":"Jung Hoon Lee","doi":"10.32917/h2022006","DOIUrl":null,"url":null,"abstract":"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unperturbed weakly reducible non-minimal bridge positions\",\"authors\":\"Jung Hoon Lee\",\"doi\":\"10.32917/h2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2022006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2022006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一对相消的桥板,则称结的桥板位置受到扰动。受Jang Kobayashi Ozawa Takao的结允许未受扰动的强不可约非极小桥位置的例子的启发,我们导出了未受扰动弱可约非最小桥位置的实例。此外,还提出了Gordon猜想的一个桥接版本:未受扰动的桥接位置的连通和是未受干扰的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Unperturbed weakly reducible non-minimal bridge positions
A bridge position of a knot is said to be perturbed if there exists a cancelling pair of bridge disks. Motivated by the examples of knots admitting unperturbed strongly irreducible non-minimal bridge positions due to Jang-Kobayashi-Ozawa-Takao, we derive examples of unperturbed weakly reducible non-minimal bridge positions. Also, a bridge version of Gordon's Conjecture is proposed: the connected sum of unperturbed bridge positions is unperturbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信