无穷保角迭代函数系统的维谱

IF 1.1 4区 数学 Q1 MATHEMATICS
Tushar Das, David Simmons
{"title":"无穷保角迭代函数系统的维谱","authors":"Tushar Das, David Simmons","doi":"10.4171/JFG/112","DOIUrl":null,"url":null,"abstract":"The dimension spectrum of a conformal iterated function system (CIFS) is the set of all Hausdorff dimensions of its various subsystem limit sets. This brief note provides two constructions -- (i) a compact perfect set that cannot be realized as the dimension spectrum of a CIFS; and (ii) a similarity IFS whose dimension spectrum has zero Hausdorff dimension, and thus is not uniformly perfect -- which resolve questions posed by Chousionis, Leykekhman, and Urba\\'nski, and go on provoke fresh conjectures and questions regarding the topological and metric properties of IFS dimension spectra.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the dimension spectra of infinite conformal iterated function systems\",\"authors\":\"Tushar Das, David Simmons\",\"doi\":\"10.4171/JFG/112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dimension spectrum of a conformal iterated function system (CIFS) is the set of all Hausdorff dimensions of its various subsystem limit sets. This brief note provides two constructions -- (i) a compact perfect set that cannot be realized as the dimension spectrum of a CIFS; and (ii) a similarity IFS whose dimension spectrum has zero Hausdorff dimension, and thus is not uniformly perfect -- which resolve questions posed by Chousionis, Leykekhman, and Urba\\\\'nski, and go on provoke fresh conjectures and questions regarding the topological and metric properties of IFS dimension spectra.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/112\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

保形迭代函数系统(CIFS)的维谱是其各个子系统极限集的所有Hausdorff维的集合。这个简短的说明提供了两种结构——(i)一个紧凑的完美集,它不能作为CIFS的维度谱实现;(ii)一个相似的IFS,其维数谱为零Hausdorff维数,因此不是一致完美的——这解决了Chousionis、Leykekhman和Urba 'nski提出的问题,并继续引发关于IFS维数谱的拓扑和度量性质的新猜想和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the dimension spectra of infinite conformal iterated function systems
The dimension spectrum of a conformal iterated function system (CIFS) is the set of all Hausdorff dimensions of its various subsystem limit sets. This brief note provides two constructions -- (i) a compact perfect set that cannot be realized as the dimension spectrum of a CIFS; and (ii) a similarity IFS whose dimension spectrum has zero Hausdorff dimension, and thus is not uniformly perfect -- which resolve questions posed by Chousionis, Leykekhman, and Urba\'nski, and go on provoke fresh conjectures and questions regarding the topological and metric properties of IFS dimension spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信