NFRP约束混凝土提高抗压强度的初步研究

T. Saidi, M. Hasan, Z. Amalia
{"title":"NFRP约束混凝土提高抗压强度的初步研究","authors":"T. Saidi, M. Hasan, Z. Amalia","doi":"10.13170/aijst.12.1.31500","DOIUrl":null,"url":null,"abstract":"Earthquake that occurred within a period of several years may be caused reinforced concrete column fails to maintain its performance. Reinforcement methods to improve the quality of concrete in resisting earthquake loads are needed. Strengthening the column with external restraints is expected to increase the strength of the concrete. The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material for external restraint on structures is one of the materials that has been widely used for strengthening concrete structures. Considering the environmental impact, natural FRP materials have been developing nowadays. One of the natural fibers that have been researched and used as a composite material for Natural Fiber Reinforced Polymer (NFRP) is abaca fiber. This research aims to find the contribution of abaca fiber in increasing the compressive strength of confined concrete as a preliminary study. In this study, the test was carried out by applying a compressive load to concrete specimens reinforced with NFRP restraints. The NFRP was investigated with variations in the number of NFRP layers. The results showed that NFRP-confined concrete has a higher compressive strength of 34.73% than the controlled specimen","PeriodicalId":7128,"journal":{"name":"Aceh International Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Study of NFRP-Confined Concrete for Enhancing Compressive Strength\",\"authors\":\"T. Saidi, M. Hasan, Z. Amalia\",\"doi\":\"10.13170/aijst.12.1.31500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquake that occurred within a period of several years may be caused reinforced concrete column fails to maintain its performance. Reinforcement methods to improve the quality of concrete in resisting earthquake loads are needed. Strengthening the column with external restraints is expected to increase the strength of the concrete. The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material for external restraint on structures is one of the materials that has been widely used for strengthening concrete structures. Considering the environmental impact, natural FRP materials have been developing nowadays. One of the natural fibers that have been researched and used as a composite material for Natural Fiber Reinforced Polymer (NFRP) is abaca fiber. This research aims to find the contribution of abaca fiber in increasing the compressive strength of confined concrete as a preliminary study. In this study, the test was carried out by applying a compressive load to concrete specimens reinforced with NFRP restraints. The NFRP was investigated with variations in the number of NFRP layers. The results showed that NFRP-confined concrete has a higher compressive strength of 34.73% than the controlled specimen\",\"PeriodicalId\":7128,\"journal\":{\"name\":\"Aceh International Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aceh International Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13170/aijst.12.1.31500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aceh International Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13170/aijst.12.1.31500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几年内发生的地震可能是由于钢筋混凝土柱不能保持其性能。需要采用加固方法来提高混凝土的抗震性能。用外部约束加固柱子有望提高混凝土的强度。使用合成纤维增强聚合物(FRP)作为结构外部约束的复合材料是广泛用于加固混凝土结构的材料之一。考虑到对环境的影响,天然玻璃钢材料一直在发展。abaca纤维是一种已被研究并用作天然纤维增强聚合物(NFRP)复合材料的天然纤维。本研究旨在初步研究阿巴卡纤维在提高约束混凝土抗压强度方面的作用。在本研究中,通过对NFRP约束加固的混凝土试样施加压缩载荷来进行试验。研究了NFRP随NFRP层数的变化。结果表明,NFRP约束混凝土的抗压强度比对照试件高34.73%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary Study of NFRP-Confined Concrete for Enhancing Compressive Strength
Earthquake that occurred within a period of several years may be caused reinforced concrete column fails to maintain its performance. Reinforcement methods to improve the quality of concrete in resisting earthquake loads are needed. Strengthening the column with external restraints is expected to increase the strength of the concrete. The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material for external restraint on structures is one of the materials that has been widely used for strengthening concrete structures. Considering the environmental impact, natural FRP materials have been developing nowadays. One of the natural fibers that have been researched and used as a composite material for Natural Fiber Reinforced Polymer (NFRP) is abaca fiber. This research aims to find the contribution of abaca fiber in increasing the compressive strength of confined concrete as a preliminary study. In this study, the test was carried out by applying a compressive load to concrete specimens reinforced with NFRP restraints. The NFRP was investigated with variations in the number of NFRP layers. The results showed that NFRP-confined concrete has a higher compressive strength of 34.73% than the controlled specimen
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信