{"title":"海姆斯列夫的实在几何学","authors":"Jesper Lützen","doi":"10.1016/j.hm.2020.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>During the first half of the 20th century the Danish geometer<span> Johannes Hjelmslev developed what he called a geometry of reality. It was presented as an alternative to the idealized Euclidean paradigm that had recently been completed by Hilbert. Hjelmslev argued that his geometry of reality was superior to the Euclidean geometry both didactically, scientifically and in practice: Didactically, because it was closer to experience and intuition, in practice because it was in accordance with the real geometrical drawing practice of the engineer, and scientifically because it was based on a smaller axiomatic basis than Hilbertian Euclidean geometry but still included the important theorems of ordinary geometry. In this paper, I shall primarily analyze the scientific aspect of Hjelmslev's new approach to geometry that gave rise to the so-called Hjelmslev (incidence) geometry or ring geometry.</span></p></div>","PeriodicalId":51061,"journal":{"name":"Historia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hm.2020.08.003","citationCount":"0","resultStr":"{\"title\":\"Hjelmslev's geometry of reality\",\"authors\":\"Jesper Lützen\",\"doi\":\"10.1016/j.hm.2020.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the first half of the 20th century the Danish geometer<span> Johannes Hjelmslev developed what he called a geometry of reality. It was presented as an alternative to the idealized Euclidean paradigm that had recently been completed by Hilbert. Hjelmslev argued that his geometry of reality was superior to the Euclidean geometry both didactically, scientifically and in practice: Didactically, because it was closer to experience and intuition, in practice because it was in accordance with the real geometrical drawing practice of the engineer, and scientifically because it was based on a smaller axiomatic basis than Hilbertian Euclidean geometry but still included the important theorems of ordinary geometry. In this paper, I shall primarily analyze the scientific aspect of Hjelmslev's new approach to geometry that gave rise to the so-called Hjelmslev (incidence) geometry or ring geometry.</span></p></div>\",\"PeriodicalId\":51061,\"journal\":{\"name\":\"Historia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hm.2020.08.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Historia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0315086020300677\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Historia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0315086020300677","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
During the first half of the 20th century the Danish geometer Johannes Hjelmslev developed what he called a geometry of reality. It was presented as an alternative to the idealized Euclidean paradigm that had recently been completed by Hilbert. Hjelmslev argued that his geometry of reality was superior to the Euclidean geometry both didactically, scientifically and in practice: Didactically, because it was closer to experience and intuition, in practice because it was in accordance with the real geometrical drawing practice of the engineer, and scientifically because it was based on a smaller axiomatic basis than Hilbertian Euclidean geometry but still included the important theorems of ordinary geometry. In this paper, I shall primarily analyze the scientific aspect of Hjelmslev's new approach to geometry that gave rise to the so-called Hjelmslev (incidence) geometry or ring geometry.
期刊介绍:
Historia Mathematica publishes historical scholarship on mathematics and its development in all cultures and time periods. In particular, the journal encourages informed studies on mathematicians and their work in historical context, on the histories of institutions and organizations supportive of the mathematical endeavor, on historiographical topics in the history of mathematics, and on the interrelations between mathematical ideas, science, and the broader culture.