Arkan Hammoodi Hasan Kabla, Mohammed Anbar, Shady Hamouda, A. A. Bahashwan, Taief Alaa Al-Amiedy, I. Hasbullah, S. Faisal
{"title":"检测互联网协议第六版攻击的机器和深度学习技术综述","authors":"Arkan Hammoodi Hasan Kabla, Mohammed Anbar, Shady Hamouda, A. A. Bahashwan, Taief Alaa Al-Amiedy, I. Hasbullah, S. Faisal","doi":"10.11591/ijece.v13i5.pp5617-5631","DOIUrl":null,"url":null,"abstract":"The rapid development of information and communication technologies has increased the demand for internet-facing devices that require publicly accessible internet protocol (IP) addresses, resulting in the depletion of internet protocol version 4 (IPv4) address space. As a result, internet protocol version 6 (IPv6) was designed to address this issue. However, IPv6 is still not widely used because of security concerns. An intrusion detection system (IDS) is one example of a security mechanism used to secure networks. Lately, the use of machine learning (ML) or deep learning (DL) detection models in IDSs is gaining popularity due to their ability to detect threats on IPv6 networks accurately. However, there is an apparent lack of studies that review ML and DL in IDS. Even the existing reviews of ML and DL fail to compare those techniques. Thus, this paper comprehensively elucidates ML and DL techniques and IPv6-based distributed denial of service (DDoS) attacks. Additionally, this paper includes a qualitative comparison with other related works. Moreover, this work also thoroughly reviews the existing ML and DL-based IDSs for detecting IPv6 and IPv4 attacks. Lastly, researchers could use this review as a guide in the future to improve their work on DL and ML-based IDS.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine and deep learning techniques for detecting internet protocol version six attacks: a review\",\"authors\":\"Arkan Hammoodi Hasan Kabla, Mohammed Anbar, Shady Hamouda, A. A. Bahashwan, Taief Alaa Al-Amiedy, I. Hasbullah, S. Faisal\",\"doi\":\"10.11591/ijece.v13i5.pp5617-5631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of information and communication technologies has increased the demand for internet-facing devices that require publicly accessible internet protocol (IP) addresses, resulting in the depletion of internet protocol version 4 (IPv4) address space. As a result, internet protocol version 6 (IPv6) was designed to address this issue. However, IPv6 is still not widely used because of security concerns. An intrusion detection system (IDS) is one example of a security mechanism used to secure networks. Lately, the use of machine learning (ML) or deep learning (DL) detection models in IDSs is gaining popularity due to their ability to detect threats on IPv6 networks accurately. However, there is an apparent lack of studies that review ML and DL in IDS. Even the existing reviews of ML and DL fail to compare those techniques. Thus, this paper comprehensively elucidates ML and DL techniques and IPv6-based distributed denial of service (DDoS) attacks. Additionally, this paper includes a qualitative comparison with other related works. Moreover, this work also thoroughly reviews the existing ML and DL-based IDSs for detecting IPv6 and IPv4 attacks. Lastly, researchers could use this review as a guide in the future to improve their work on DL and ML-based IDS.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5617-5631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5617-5631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Machine and deep learning techniques for detecting internet protocol version six attacks: a review
The rapid development of information and communication technologies has increased the demand for internet-facing devices that require publicly accessible internet protocol (IP) addresses, resulting in the depletion of internet protocol version 4 (IPv4) address space. As a result, internet protocol version 6 (IPv6) was designed to address this issue. However, IPv6 is still not widely used because of security concerns. An intrusion detection system (IDS) is one example of a security mechanism used to secure networks. Lately, the use of machine learning (ML) or deep learning (DL) detection models in IDSs is gaining popularity due to their ability to detect threats on IPv6 networks accurately. However, there is an apparent lack of studies that review ML and DL in IDS. Even the existing reviews of ML and DL fail to compare those techniques. Thus, this paper comprehensively elucidates ML and DL techniques and IPv6-based distributed denial of service (DDoS) attacks. Additionally, this paper includes a qualitative comparison with other related works. Moreover, this work also thoroughly reviews the existing ML and DL-based IDSs for detecting IPv6 and IPv4 attacks. Lastly, researchers could use this review as a guide in the future to improve their work on DL and ML-based IDS.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]