对分数阶偏微分方程上同调方法的新认识

IF 1.1 Q2 MATHEMATICS, APPLIED
A. D. Nezhad, M. Moghaddam
{"title":"对分数阶偏微分方程上同调方法的新认识","authors":"A. D. Nezhad, M. Moghaddam","doi":"10.22034/CMDE.2020.39020.1710","DOIUrl":null,"url":null,"abstract":"One of the aims of this article is to investigate the solvability and unsolvability conditions for fractional cohomological equation‎ ‎$ psi^{alpha} f=g $‎, ‎on‎ ‎$ mathbb{T}^n $‎. ‎We prove that if‎ ‎$ f $‎ ‎is not analytic‎, ‎then fractional integro-differential equation‎ ‎$ I_t^{1-alpha} D_x^{alpha}u(x,t)+i I_x^{1-alpha} D_t^{alpha}u(x,t)=f(t) $‎ ‎has no solution in‎ ‎$ C^1(B) $ with $0< alpha leq 1$‎. ‎‎W‎e ‎also‎ obtain ‎solutions ‎for‎ the space-time fractional heat ‎equations‎ on‎ ‎$ mathbb{S}^1 $‎ ‎and ‎$ mathbb{T}^n $‎. ‎At the end of this article‎, ‎there are examples of fractional partial differential equations and a fractional integral equation together with their solutions‎.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a new understanding of cohomological method for fractional partial differential equations\",\"authors\":\"A. D. Nezhad, M. Moghaddam\",\"doi\":\"10.22034/CMDE.2020.39020.1710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the aims of this article is to investigate the solvability and unsolvability conditions for fractional cohomological equation‎ ‎$ psi^{alpha} f=g $‎, ‎on‎ ‎$ mathbb{T}^n $‎. ‎We prove that if‎ ‎$ f $‎ ‎is not analytic‎, ‎then fractional integro-differential equation‎ ‎$ I_t^{1-alpha} D_x^{alpha}u(x,t)+i I_x^{1-alpha} D_t^{alpha}u(x,t)=f(t) $‎ ‎has no solution in‎ ‎$ C^1(B) $ with $0< alpha leq 1$‎. ‎‎W‎e ‎also‎ obtain ‎solutions ‎for‎ the space-time fractional heat ‎equations‎ on‎ ‎$ mathbb{S}^1 $‎ ‎and ‎$ mathbb{T}^n $‎. ‎At the end of this article‎, ‎there are examples of fractional partial differential equations and a fractional integral equation together with their solutions‎.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.39020.1710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39020.1710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的之一是调查部分cohomological方程的可解性和不可解性条件‎‎美元psi ^{α}f = g‎美元,在‎‎‎美元mathbb {T} ^ n‎美元。证明了如果$ $ f $ $ $不是解析的,则分数阶积分微分方程$ $ I_t^{1- α} D_x^{α}u(x,t)+i I_x^{1- α} D_t^{α}u(x,t)=f(t) $ $在$ $ C^1(B) $ $0< α leq 1$ $ $ $中无解。我们也得到了在$ $ mathbb{S}^1 $ $ mathbb{T}^n $ $上的时空分数热方程的解。在这篇文章的最后,有分数阶偏微分方程和分数阶积分方程的例子以及它们的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a new understanding of cohomological method for fractional partial differential equations
One of the aims of this article is to investigate the solvability and unsolvability conditions for fractional cohomological equation‎ ‎$ psi^{alpha} f=g $‎, ‎on‎ ‎$ mathbb{T}^n $‎. ‎We prove that if‎ ‎$ f $‎ ‎is not analytic‎, ‎then fractional integro-differential equation‎ ‎$ I_t^{1-alpha} D_x^{alpha}u(x,t)+i I_x^{1-alpha} D_t^{alpha}u(x,t)=f(t) $‎ ‎has no solution in‎ ‎$ C^1(B) $ with $0< alpha leq 1$‎. ‎‎W‎e ‎also‎ obtain ‎solutions ‎for‎ the space-time fractional heat ‎equations‎ on‎ ‎$ mathbb{S}^1 $‎ ‎and ‎$ mathbb{T}^n $‎. ‎At the end of this article‎, ‎there are examples of fractional partial differential equations and a fractional integral equation together with their solutions‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信