鼓泡流化床燃烧器选择性非催化还原效率的实验验证

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Kristýna Michaliková, J. Hrdlička, Matěj Vodička, Pavel Skopec, Jitka Jeníková, L. Pilař
{"title":"鼓泡流化床燃烧器选择性非催化还原效率的实验验证","authors":"Kristýna Michaliková, J. Hrdlička, Matěj Vodička, Pavel Skopec, Jitka Jeníková, L. Pilař","doi":"10.14311/ap.2022.62.0361","DOIUrl":null,"url":null,"abstract":"Controlling nitrogen oxide (NOX) emissions is still a challenge as increasingly stringent emission limits are introduced. Strict regulations will lead to the need to introduce secondary measures even for boilers with bubbling fluidized bed (BFB), which are generally characterized by low NOX emissions. Selective non-catalytic reduction has lower investment costs compared to other secondary measures for NOX reduction, but the temperatures for its efficient utilization are difficult to achieve in BFBs. This paper studies the possibility of an effective application of selective non-catalytic reduction (SNCR) of nitrogen oxides in a pilot-scale facility with a bubbling fluidized bed. The effect of temperatures between 880 and 950 °C in the reagent injection zone on NOX reduction was investigated. For the selected temperature, the effect of the amount of injected reagent, urea solution with concentration 32.5%wt., was studied. The experiments were carried out using 500 kWth pilot scale BFB unit combusting lignite. In addition, an experiment was performed with the combustion of wooden pellets. With reagent injection, all experiments led to the reduction of nitrogen oxides and the highest NOX reduction of 58% was achieved.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental verification of the efficiency of selective non-catalytic reduction in a bubbling fluidized bed combustor\",\"authors\":\"Kristýna Michaliková, J. Hrdlička, Matěj Vodička, Pavel Skopec, Jitka Jeníková, L. Pilař\",\"doi\":\"10.14311/ap.2022.62.0361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling nitrogen oxide (NOX) emissions is still a challenge as increasingly stringent emission limits are introduced. Strict regulations will lead to the need to introduce secondary measures even for boilers with bubbling fluidized bed (BFB), which are generally characterized by low NOX emissions. Selective non-catalytic reduction has lower investment costs compared to other secondary measures for NOX reduction, but the temperatures for its efficient utilization are difficult to achieve in BFBs. This paper studies the possibility of an effective application of selective non-catalytic reduction (SNCR) of nitrogen oxides in a pilot-scale facility with a bubbling fluidized bed. The effect of temperatures between 880 and 950 °C in the reagent injection zone on NOX reduction was investigated. For the selected temperature, the effect of the amount of injected reagent, urea solution with concentration 32.5%wt., was studied. The experiments were carried out using 500 kWth pilot scale BFB unit combusting lignite. In addition, an experiment was performed with the combustion of wooden pellets. With reagent injection, all experiments led to the reduction of nitrogen oxides and the highest NOX reduction of 58% was achieved.\",\"PeriodicalId\":45804,\"journal\":{\"name\":\"Acta Polytechnica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/ap.2022.62.0361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越严格的排放限制的引入,控制氮氧化物(NOX)的排放仍然是一项挑战。严格的法规将导致即使是具有鼓泡流化床(BFB)的锅炉也需要引入二次措施,而鼓泡流化床通常具有低NOX排放的特征。选择性非催化还原与其他二次还原措施相比,投资成本较低,但在BFBs中难以达到有效利用的温度。本文研究了在鼓泡流化床中试装置上有效应用氮氧化物选择性非催化还原(SNCR)的可能性。研究了试剂注入区880 ~ 950℃温度对NOX还原的影响。对于所选温度、注射试剂量的影响,尿素溶液浓度为32.5%wt。,进行了研究。实验采用500kwth中试褐煤BFB装置进行。此外,还对木质颗粒进行了燃烧实验。在注入试剂的情况下,所有实验都导致了氮氧化物的还原,NOX的最高还原率达到58%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental verification of the efficiency of selective non-catalytic reduction in a bubbling fluidized bed combustor
Controlling nitrogen oxide (NOX) emissions is still a challenge as increasingly stringent emission limits are introduced. Strict regulations will lead to the need to introduce secondary measures even for boilers with bubbling fluidized bed (BFB), which are generally characterized by low NOX emissions. Selective non-catalytic reduction has lower investment costs compared to other secondary measures for NOX reduction, but the temperatures for its efficient utilization are difficult to achieve in BFBs. This paper studies the possibility of an effective application of selective non-catalytic reduction (SNCR) of nitrogen oxides in a pilot-scale facility with a bubbling fluidized bed. The effect of temperatures between 880 and 950 °C in the reagent injection zone on NOX reduction was investigated. For the selected temperature, the effect of the amount of injected reagent, urea solution with concentration 32.5%wt., was studied. The experiments were carried out using 500 kWth pilot scale BFB unit combusting lignite. In addition, an experiment was performed with the combustion of wooden pellets. With reagent injection, all experiments led to the reduction of nitrogen oxides and the highest NOX reduction of 58% was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Polytechnica
Acta Polytechnica ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
12.50%
发文量
49
审稿时长
24 weeks
期刊介绍: Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信