仿射控制系统解的Randers-Kropina度量的多个连通测地线

Pub Date : 2023-02-26 DOI:10.12775/tmna.2022.066
E. Caponio, M. Javaloyes, A. Masiello
{"title":"仿射控制系统解的Randers-Kropina度量的多个连通测地线","authors":"E. Caponio, M. Javaloyes, A. Masiello","doi":"10.12775/tmna.2022.066","DOIUrl":null,"url":null,"abstract":"We consider a geodesic problem in a manifold endowed with\na Randers-Kropina metric. This is a type of a singular Finsler metric arising both\nin the description of the lightlike vectors of a spacetime endowed with a causal Killing vector field and in the Zermelo's navigation problem with a wind represented\nby a vector field having norm not greater than one.\nBy using Lusternik-Schnirelman theory, we prove existence of infinitely many\ngeodesics between two given points when the manifold is not contractible.\nDue to the type of non-holonomic constraints that the velocity vectors must satisfy,\nthis is achieved thanks to some recent results about the homotopy type of the set of solutions of an affine control system associated with \na totally non-integrable distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system\",\"authors\":\"E. Caponio, M. Javaloyes, A. Masiello\",\"doi\":\"10.12775/tmna.2022.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a geodesic problem in a manifold endowed with\\na Randers-Kropina metric. This is a type of a singular Finsler metric arising both\\nin the description of the lightlike vectors of a spacetime endowed with a causal Killing vector field and in the Zermelo's navigation problem with a wind represented\\nby a vector field having norm not greater than one.\\nBy using Lusternik-Schnirelman theory, we prove existence of infinitely many\\ngeodesics between two given points when the manifold is not contractible.\\nDue to the type of non-holonomic constraints that the velocity vectors must satisfy,\\nthis is achieved thanks to some recent results about the homotopy type of the set of solutions of an affine control system associated with \\na totally non-integrable distribution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑具有Randers-Kropina度量的流形中的测地线问题。这是一种奇异Finsler度量,既出现在具有因果Killing向量场的时空类光向量的描述中,也出现在Zermelo导航问题中,其中风由范数不大于1的向量场表示。利用Lusternik-Schnirelman理论,我们证明了当流形不可压缩时,在两个给定点之间存在无穷多个代数。由于速度矢量必须满足的非完整约束类型,这是由于最近关于与完全不可积分布相关的仿射控制系统的解集的仿射类型的一些结果而实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system
We consider a geodesic problem in a manifold endowed with a Randers-Kropina metric. This is a type of a singular Finsler metric arising both in the description of the lightlike vectors of a spacetime endowed with a causal Killing vector field and in the Zermelo's navigation problem with a wind represented by a vector field having norm not greater than one. By using Lusternik-Schnirelman theory, we prove existence of infinitely many geodesics between two given points when the manifold is not contractible. Due to the type of non-holonomic constraints that the velocity vectors must satisfy, this is achieved thanks to some recent results about the homotopy type of the set of solutions of an affine control system associated with a totally non-integrable distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信