正交Chebyshev-Frolov格的生成与枚举

Pub Date : 2022-07-01 DOI:10.32917/h2021046
Moulay Abdellah Chkifa
{"title":"正交Chebyshev-Frolov格的生成与枚举","authors":"Moulay Abdellah Chkifa","doi":"10.32917/h2021046","DOIUrl":null,"url":null,"abstract":"Summary: We discuss orthogonal Chebyshev-Frolov lattices, their generating matrices and their use in Frolov cubature formula. We give a detailed account on coordinate-permuted systems that lead to fast computation and enumeration of such lattices. In particular, we explain the recurrences identified in (K. Suzuki and T. Yoshiki, Hiroshima Math. J., 49(1):139-159, 2019) via a plain constructive approach exhibiting a new hierarchical basis of polynomials. Dual Chebyshev-Frolov lattices and their generating matrices are also studied. Lattices enumeration in axis-parallel boxes is discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generation and enumeration of orthogonal Chebyshev-Frolov lattices\",\"authors\":\"Moulay Abdellah Chkifa\",\"doi\":\"10.32917/h2021046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: We discuss orthogonal Chebyshev-Frolov lattices, their generating matrices and their use in Frolov cubature formula. We give a detailed account on coordinate-permuted systems that lead to fast computation and enumeration of such lattices. In particular, we explain the recurrences identified in (K. Suzuki and T. Yoshiki, Hiroshima Math. J., 49(1):139-159, 2019) via a plain constructive approach exhibiting a new hierarchical basis of polynomials. Dual Chebyshev-Frolov lattices and their generating matrices are also studied. Lattices enumeration in axis-parallel boxes is discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2021046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

综述:我们讨论了正交Chebyshev-Frolov格、它们的生成矩阵以及它们在Frolov体积公式中的应用。我们详细地介绍了坐标置换系统,它导致了这种格的快速计算和枚举。特别是,我们通过一种简单的构造方法来解释(K.Suzuki和T.Yoshiki,Hiroshima Math.J.,49(1):139-1592019)中确定的递归,该方法展示了多项式的新层次基础。还研究了对偶Chebyshev-Frolov格及其生成矩阵。讨论了轴平行盒中的格枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On generation and enumeration of orthogonal Chebyshev-Frolov lattices
Summary: We discuss orthogonal Chebyshev-Frolov lattices, their generating matrices and their use in Frolov cubature formula. We give a detailed account on coordinate-permuted systems that lead to fast computation and enumeration of such lattices. In particular, we explain the recurrences identified in (K. Suzuki and T. Yoshiki, Hiroshima Math. J., 49(1):139-159, 2019) via a plain constructive approach exhibiting a new hierarchical basis of polynomials. Dual Chebyshev-Frolov lattices and their generating matrices are also studied. Lattices enumeration in axis-parallel boxes is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信