Chevalley群$G_{2}(5)$的同序元数集刻画

IF 0.7 Q2 MATHEMATICS
M. Jahandideh, M. Darafsheh
{"title":"Chevalley群$G_{2}(5)$的同序元数集刻画","authors":"M. Jahandideh, M. Darafsheh","doi":"10.22108/IJGT.2021.120906.1594","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group and $omega(G)={o(g)|gin G}$ be the set of element orders of $G$. Let $kinomega(G)$ and $s_{k}=|{gin G|o(g)=k}|$. Let $nse(G)={s_{k}|kinomega(G)}.$ In this paper, we prove that if $G$ is a group and $G_{2}(5)$ is the Chevalley simple group of type $G_{2}$ over $GF(5)$ such that $nse(G)=nse(G_{2}(5))$, then $Gcong G_{2}(5)$.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":"11 1","pages":"7-16"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Chevalley group $G_{2}(5)$ by the set of numbers of the same order elements\",\"authors\":\"M. Jahandideh, M. Darafsheh\",\"doi\":\"10.22108/IJGT.2021.120906.1594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group and $omega(G)={o(g)|gin G}$ be the set of element orders of $G$. Let $kinomega(G)$ and $s_{k}=|{gin G|o(g)=k}|$. Let $nse(G)={s_{k}|kinomega(G)}.$ In this paper, we prove that if $G$ is a group and $G_{2}(5)$ is the Chevalley simple group of type $G_{2}$ over $GF(5)$ such that $nse(G)=nse(G_{2}(5))$, then $Gcong G_{2}(5)$.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\"11 1\",\"pages\":\"7-16\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2021.120906.1594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.120906.1594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个群,$omega(G)={o(G)|ginG}$是$G$的元素阶的集合。设$kinomega(G)$和$s_{k}=|{ginG|o(G)=k}|$。设$nse(G)={s_{k}|kinomega(G)}.$在本文中,我们证明了如果$G$是一个群,$G_{2}(5)$是$GF(5)上的类型为$G_{2*的Chevalley单群,使得$nse(G)=nse(G_{2}(5))$,则$Gcong G_{2}5)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Chevalley group $G_{2}(5)$ by the set of numbers of the same order elements
Let $G$ be a group and $omega(G)={o(g)|gin G}$ be the set of element orders of $G$. Let $kinomega(G)$ and $s_{k}=|{gin G|o(g)=k}|$. Let $nse(G)={s_{k}|kinomega(G)}.$ In this paper, we prove that if $G$ is a group and $G_{2}(5)$ is the Chevalley simple group of type $G_{2}$ over $GF(5)$ such that $nse(G)=nse(G_{2}(5))$, then $Gcong G_{2}(5)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信