{"title":"墨西哥东南偏南地区的历史降水模式和未来预测","authors":"M. Andrade-Velázquez, Ojilve Ramón Medrano Pérez","doi":"10.15446/ESRJ.V25N1.87255","DOIUrl":null,"url":null,"abstract":"How to cite item Andrade-Velazquez, M., & Medrano-Perez, R. (2021). Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sciences Research Journal, 25(1), 69-84. DOI: https://doi.org/10.15446/esrj. v25n1.87255 This study analyzed climate change scenarios and their potential impact on water availability for the South-Southeast region (SSR) of Mexico. Precipitation patterns were examined using the Standardized Precipitation Index for three emissions scenarios, Representative Concentration Pathway (RCP) 4.5, RCP 6.0, and RCP 8.5, during the periods of 1960-2016, 2015-2039 (near future), and 2075-2099 (far future). Historical changes in precipitation in the SSR indicated the presence of dry and wet events driven by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation, which are the regional climate modulators. However, the impact of these phases has not been quantified for the future. The results of our climate change projections show that the Grijalva and Usumacinta rivers and surrounding regions (Chiapas and Tabasco) will have an increase in the percentage of dry and wet events shortly (2015-2039), while there is a medium to a low probability of this occurrence in rest of the SSR. By 2075-2099, Grijalva and Usumacinta will continue to have a high probability of dry events due to climate change, and the Yucatan will also exhibit this behavior. RCP 4.5 was projected to be the wettest scenario for the study area, while RCP 8.5 projected an increase in dry events during both periods (2015-2039 and 2075-2099). RCP 6.0 projected a drier 2015-2039 and wetter 2075-2099. ABSTRACT Historical precipitation patterns in the South-Southeast region of Mexico and future projections","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Historical precipitation patterns in the South-Southeast region of Mexico and future projections\",\"authors\":\"M. Andrade-Velázquez, Ojilve Ramón Medrano Pérez\",\"doi\":\"10.15446/ESRJ.V25N1.87255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to cite item Andrade-Velazquez, M., & Medrano-Perez, R. (2021). Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sciences Research Journal, 25(1), 69-84. DOI: https://doi.org/10.15446/esrj. v25n1.87255 This study analyzed climate change scenarios and their potential impact on water availability for the South-Southeast region (SSR) of Mexico. Precipitation patterns were examined using the Standardized Precipitation Index for three emissions scenarios, Representative Concentration Pathway (RCP) 4.5, RCP 6.0, and RCP 8.5, during the periods of 1960-2016, 2015-2039 (near future), and 2075-2099 (far future). Historical changes in precipitation in the SSR indicated the presence of dry and wet events driven by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation, which are the regional climate modulators. However, the impact of these phases has not been quantified for the future. The results of our climate change projections show that the Grijalva and Usumacinta rivers and surrounding regions (Chiapas and Tabasco) will have an increase in the percentage of dry and wet events shortly (2015-2039), while there is a medium to a low probability of this occurrence in rest of the SSR. By 2075-2099, Grijalva and Usumacinta will continue to have a high probability of dry events due to climate change, and the Yucatan will also exhibit this behavior. RCP 4.5 was projected to be the wettest scenario for the study area, while RCP 8.5 projected an increase in dry events during both periods (2015-2039 and 2075-2099). RCP 6.0 projected a drier 2015-2039 and wetter 2075-2099. ABSTRACT Historical precipitation patterns in the South-Southeast region of Mexico and future projections\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/ESRJ.V25N1.87255\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/ESRJ.V25N1.87255","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Historical precipitation patterns in the South-Southeast region of Mexico and future projections
How to cite item Andrade-Velazquez, M., & Medrano-Perez, R. (2021). Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sciences Research Journal, 25(1), 69-84. DOI: https://doi.org/10.15446/esrj. v25n1.87255 This study analyzed climate change scenarios and their potential impact on water availability for the South-Southeast region (SSR) of Mexico. Precipitation patterns were examined using the Standardized Precipitation Index for three emissions scenarios, Representative Concentration Pathway (RCP) 4.5, RCP 6.0, and RCP 8.5, during the periods of 1960-2016, 2015-2039 (near future), and 2075-2099 (far future). Historical changes in precipitation in the SSR indicated the presence of dry and wet events driven by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation, which are the regional climate modulators. However, the impact of these phases has not been quantified for the future. The results of our climate change projections show that the Grijalva and Usumacinta rivers and surrounding regions (Chiapas and Tabasco) will have an increase in the percentage of dry and wet events shortly (2015-2039), while there is a medium to a low probability of this occurrence in rest of the SSR. By 2075-2099, Grijalva and Usumacinta will continue to have a high probability of dry events due to climate change, and the Yucatan will also exhibit this behavior. RCP 4.5 was projected to be the wettest scenario for the study area, while RCP 8.5 projected an increase in dry events during both periods (2015-2039 and 2075-2099). RCP 6.0 projected a drier 2015-2039 and wetter 2075-2099. ABSTRACT Historical precipitation patterns in the South-Southeast region of Mexico and future projections
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.