{"title":"仅用积分逼近和:多重和和和晶格多面体","authors":"I. Pinelis","doi":"10.33205/cma.1102689","DOIUrl":null,"url":null,"abstract":"The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating sums by integrals only: multiple sums and sums over lattice polytopes\",\"authors\":\"I. Pinelis\",\"doi\":\"10.33205/cma.1102689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\\\\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1102689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1102689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximating sums by integrals only: multiple sums and sums over lattice polytopes
The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.