仅用积分逼近和:多重和和和晶格多面体

IF 1.1 Q1 MATHEMATICS
I. Pinelis
{"title":"仅用积分逼近和:多重和和和晶格多面体","authors":"I. Pinelis","doi":"10.33205/cma.1102689","DOIUrl":null,"url":null,"abstract":"The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating sums by integrals only: multiple sums and sums over lattice polytopes\",\"authors\":\"I. Pinelis\",\"doi\":\"10.33205/cma.1102689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\\\\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1102689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1102689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

欧拉—麦克劳林(EM)求和公式用于许多理论研究和数值计算。它近似于函数$f$的值的和$\sum_{k=0}^{n-1} f(k)$,通过$f$的相应积分及其高阶导数$f^{(j)}$的值的线性组合。作者最近提出了一种替代的(Alt)求和公式,它仅用积分的线性组合来近似求和,而不使用f的高阶导数。结果表明,在大多数情况下,在执行时间和内存使用方面,Alt公式将优于EM公式,或者大大优于EM公式。本文给出了Alt公式的一个多和/多指标和推广,并将其应用于可能发散的多指标级数求和和及整格多面体的积分点上的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating sums by integrals only: multiple sums and sums over lattice polytopes
The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was recently presented by the author, which approximates the sum by a linear combination of integrals only, without using high-order derivatives of $f$. It was shown that the Alt formula will in most cases outperform, or greatly outperform, the EM formula in terms of the execution time and memory use. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Constructive Mathematical Analysis
Constructive Mathematical Analysis Mathematics-Analysis
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信