{"title":"基于多特征的ResUnet算法区分浒苔和马尾藻","authors":"Jinyu Li, Shengjia Zhang, Chao Zhang, Hong-chun Zhu","doi":"10.1080/01490419.2023.2197265","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distinguishing Ulva prolifera and Sargassum horneri by using multi-feature-based ResUnet algorithm\",\"authors\":\"Jinyu Li, Shengjia Zhang, Chao Zhang, Hong-chun Zhu\",\"doi\":\"10.1080/01490419.2023.2197265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2023.2197265\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2023.2197265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Distinguishing Ulva prolifera and Sargassum horneri by using multi-feature-based ResUnet algorithm
Abstract In recent years, two types of macroalgae, namely, Ulva prolifera and Sargassum horneri, have appeared occasionally together in the Yellow Sea and the East China Sea. Remote sensing enables timely and cost-effective observation of macroalgae across large areas. In the available studies, the recognition and classification of the two macroalgae are primarily based on spectral difference analysis. In this study, the spectral features, indices and textural feature parameters of the macroalgae targets were extracted and a preliminary multi-feature dataset was constructed based on Sentinel-2 images. Feature selection was performed using SHAP-based importance analysis and Bhattacharyya distance. From this, a multi-feature dataset was created and used as an input to a deep semantic segmentation network of improved ResUnet. The experiments of intelligent recognition and classification of U. prolifera and S. horneri were carried out using the proposed multi-feature-based ResUnet algorithm, with specific F1-scores of 96.7% and 96.8%, respectively. The proposed multi-feature-based ResUnet algorithm can obtain efficient and high-accuracy results for the recognition and classification of marine floating macroalgae. It achieves accurate remote sensing monitoring of the two types of marine floating macroalgae and has significant theoretical research significance and practical application value.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.