保持不相交、三重积或范数的矩形矩阵空间之间的非满射映射

IF 0.7 4区 数学 Q2 MATHEMATICS
Chi-Kwong Li, M. Tsai, Ya-Shu Wang, N. Wong
{"title":"保持不相交、三重积或范数的矩形矩阵空间之间的非满射映射","authors":"Chi-Kwong Li, M. Tsai, Ya-Shu Wang, N. Wong","doi":"10.7900/jot.2018may14.2238","DOIUrl":null,"url":null,"abstract":"Let Mm,n be the space of m×n real or complex rectangular matrices. Two matrices A,B∈Mm,n are disjoint if A∗B=0n and AB∗=0m. We show that a linear map Φ:Mm,n→Mr,s preserving disjointness exactly when Φ(A)=U⎛⎜⎝A⊗Q1000At⊗Q2000⎞⎟⎠V,∀A∈Mm,n, for some unitary matrices U∈Mr,r and V∈Ms,s, and positive diagonal matrices Q1,Q2, where Q1 or Q2 may be vacuous. The result is used to characterize nonsurjective linear maps between rectangular matrix spaces preserving (zero) JB∗-triple products, the Schatten p-norms or the Ky--Fan k-norms.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonsurjective maps between rectangular matrix spaces preserving disjointness, triple products, or norms\",\"authors\":\"Chi-Kwong Li, M. Tsai, Ya-Shu Wang, N. Wong\",\"doi\":\"10.7900/jot.2018may14.2238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Mm,n be the space of m×n real or complex rectangular matrices. Two matrices A,B∈Mm,n are disjoint if A∗B=0n and AB∗=0m. We show that a linear map Φ:Mm,n→Mr,s preserving disjointness exactly when Φ(A)=U⎛⎜⎝A⊗Q1000At⊗Q2000⎞⎟⎠V,∀A∈Mm,n, for some unitary matrices U∈Mr,r and V∈Ms,s, and positive diagonal matrices Q1,Q2, where Q1 or Q2 may be vacuous. The result is used to characterize nonsurjective linear maps between rectangular matrix spaces preserving (zero) JB∗-triple products, the Schatten p-norms or the Ky--Fan k-norms.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2018may14.2238\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2018may14.2238","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设Mm,n是m×n实或复矩形矩阵的空间。如果A*B=0n和AB*=0m,两个矩阵A,B∈Mm,n是不相交的。我们证明了一个线性映射Φ:Mm,n→当Φ(A)=U⎛⎜\911 7; A⊗Q1000At \8855\Q2000⎞⎩V,∀A∈Mm,n时,Mr,s恰好保持不相交,对于一些酉矩阵U∈Mr,r和V∈Ms,s,以及正对角矩阵Q1,Q2,其中Q1或Q2可能是空的。该结果用于刻画保(零)JB*-三乘积矩形矩阵空间、Schatten p-范数或Ky-Fan k-范数之间的非凸线性映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonsurjective maps between rectangular matrix spaces preserving disjointness, triple products, or norms
Let Mm,n be the space of m×n real or complex rectangular matrices. Two matrices A,B∈Mm,n are disjoint if A∗B=0n and AB∗=0m. We show that a linear map Φ:Mm,n→Mr,s preserving disjointness exactly when Φ(A)=U⎛⎜⎝A⊗Q1000At⊗Q2000⎞⎟⎠V,∀A∈Mm,n, for some unitary matrices U∈Mr,r and V∈Ms,s, and positive diagonal matrices Q1,Q2, where Q1 or Q2 may be vacuous. The result is used to characterize nonsurjective linear maps between rectangular matrix spaces preserving (zero) JB∗-triple products, the Schatten p-norms or the Ky--Fan k-norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信