基于可靠性约束的比例拓扑优化

Q4 Chemical Engineering
R. R. Amaral, Julian Alves Borges, H. Gomes
{"title":"基于可靠性约束的比例拓扑优化","authors":"R. R. Amaral, Julian Alves Borges, H. Gomes","doi":"10.22055/JACM.2021.38440.3226","DOIUrl":null,"url":null,"abstract":"Topology optimization is a methodology widely used in the design phase that has gained space in engineering. On the other hand, uncertainty is present in material properties, loads, and boundary conditions in practically any design. The main goal for this paper lies in the coupling of the two subjects to account for uncertainties in the topology optimization. The Proportional Topology Optimization method renders the possibility of treating the stress constraints in a unified way. This allows topologies that at the same time preserve structural reliability and optimize costs. The Proportional Topology Optimization method under the reliability constraint is presented for isostatic and hyperstatic beam examples with stress and displacement LSF.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proportional Topology Optimization under Reliability-based Constraints\",\"authors\":\"R. R. Amaral, Julian Alves Borges, H. Gomes\",\"doi\":\"10.22055/JACM.2021.38440.3226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topology optimization is a methodology widely used in the design phase that has gained space in engineering. On the other hand, uncertainty is present in material properties, loads, and boundary conditions in practically any design. The main goal for this paper lies in the coupling of the two subjects to account for uncertainties in the topology optimization. The Proportional Topology Optimization method renders the possibility of treating the stress constraints in a unified way. This allows topologies that at the same time preserve structural reliability and optimize costs. The Proportional Topology Optimization method under the reliability constraint is presented for isostatic and hyperstatic beam examples with stress and displacement LSF.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2021.38440.3226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.38440.3226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2

摘要

拓扑优化是一种广泛应用于设计阶段的方法,在工程中获得了很大的发展空间。另一方面,在几乎任何设计中,材料特性、载荷和边界条件都存在不确定性。本文的主要目标在于将这两个主题耦合起来,以解释拓扑优化中的不确定性。比例拓扑优化方法为统一处理应力约束提供了可能。这使得拓扑结构可以同时保持结构可靠性和优化成本。针对具有应力和位移LSF的等静力和超静力梁实例,提出了可靠性约束下的比例拓扑优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportional Topology Optimization under Reliability-based Constraints
Topology optimization is a methodology widely used in the design phase that has gained space in engineering. On the other hand, uncertainty is present in material properties, loads, and boundary conditions in practically any design. The main goal for this paper lies in the coupling of the two subjects to account for uncertainties in the topology optimization. The Proportional Topology Optimization method renders the possibility of treating the stress constraints in a unified way. This allows topologies that at the same time preserve structural reliability and optimize costs. The Proportional Topology Optimization method under the reliability constraint is presented for isostatic and hyperstatic beam examples with stress and displacement LSF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信