Rohan Prabhu, Jennifer Bracken, Clinton Armstrong, K. Jablokow, T. Simpson, N. Meisel
{"title":"增材制造:研究增材制造设计的使用,以鼓励工程设计行业的创造力","authors":"Rohan Prabhu, Jennifer Bracken, Clinton Armstrong, K. Jablokow, T. Simpson, N. Meisel","doi":"10.1080/21650349.2020.1813633","DOIUrl":null,"url":null,"abstract":"ABSTRACT The capabilities of additive manufacturing (AM) enable designers to generate and build creative solutions beyond the limitations of traditional manufacturing. However, designers must also accommodate AM limitations to minimize build failures. Several researchers have proposed design tools and educational interventions for integrating design for AM (DfAM) in engineering design. However, there is a need to investigate the effect of DfAM training on industry professionals’ use of these techniques and its subsequent effects on the creativity of their designs. In this paper, we present a workshop-based study in which industry professionals were sequentially introduced to opportunistic and restrictive DfAM. Participants were also given a DfAM task, with short idea generation sessions conducted between each content lecture. The participants’ designs and their DfAM and creative self-efficacies were compared from before to after receiving DfAM training. The results show that DfAM training successfully increased participants’ restrictive DfAM self-efficacy; however, no changes were seen in their opportunistic DfAM or creative self-efficacies. Further, the results show an increase in the uniqueness and overall creativity of the participants’ designs, but no significant changes were seen in the initially high usefulness of the designs. These findings suggest that DfAM training presents an opportunity to encourage creative idea generation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21650349.2020.1813633","citationCount":"19","resultStr":"{\"title\":\"Additive creativity: investigating the use of design for additive manufacturing to encourage creativity in the engineering design industry\",\"authors\":\"Rohan Prabhu, Jennifer Bracken, Clinton Armstrong, K. Jablokow, T. Simpson, N. Meisel\",\"doi\":\"10.1080/21650349.2020.1813633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The capabilities of additive manufacturing (AM) enable designers to generate and build creative solutions beyond the limitations of traditional manufacturing. However, designers must also accommodate AM limitations to minimize build failures. Several researchers have proposed design tools and educational interventions for integrating design for AM (DfAM) in engineering design. However, there is a need to investigate the effect of DfAM training on industry professionals’ use of these techniques and its subsequent effects on the creativity of their designs. In this paper, we present a workshop-based study in which industry professionals were sequentially introduced to opportunistic and restrictive DfAM. Participants were also given a DfAM task, with short idea generation sessions conducted between each content lecture. The participants’ designs and their DfAM and creative self-efficacies were compared from before to after receiving DfAM training. The results show that DfAM training successfully increased participants’ restrictive DfAM self-efficacy; however, no changes were seen in their opportunistic DfAM or creative self-efficacies. Further, the results show an increase in the uniqueness and overall creativity of the participants’ designs, but no significant changes were seen in the initially high usefulness of the designs. These findings suggest that DfAM training presents an opportunity to encourage creative idea generation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21650349.2020.1813633\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21650349.2020.1813633\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21650349.2020.1813633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Additive creativity: investigating the use of design for additive manufacturing to encourage creativity in the engineering design industry
ABSTRACT The capabilities of additive manufacturing (AM) enable designers to generate and build creative solutions beyond the limitations of traditional manufacturing. However, designers must also accommodate AM limitations to minimize build failures. Several researchers have proposed design tools and educational interventions for integrating design for AM (DfAM) in engineering design. However, there is a need to investigate the effect of DfAM training on industry professionals’ use of these techniques and its subsequent effects on the creativity of their designs. In this paper, we present a workshop-based study in which industry professionals were sequentially introduced to opportunistic and restrictive DfAM. Participants were also given a DfAM task, with short idea generation sessions conducted between each content lecture. The participants’ designs and their DfAM and creative self-efficacies were compared from before to after receiving DfAM training. The results show that DfAM training successfully increased participants’ restrictive DfAM self-efficacy; however, no changes were seen in their opportunistic DfAM or creative self-efficacies. Further, the results show an increase in the uniqueness and overall creativity of the participants’ designs, but no significant changes were seen in the initially high usefulness of the designs. These findings suggest that DfAM training presents an opportunity to encourage creative idea generation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.