岩石破裂抗剪强度各向异性试验研究

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Tomáš Proisl
{"title":"岩石破裂抗剪强度各向异性试验研究","authors":"Tomáš Proisl","doi":"10.13168/agg.2022.0001","DOIUrl":null,"url":null,"abstract":"Joints significantly reduce rock cohesion compared to unfractured rock, but the question is what effect the possible anisotropy of the shear strength of different types of rupture has on possible subsequent failure. Both natural samples of granodiorite with natural joints and fault surfaces and gypsum models have been tested on the Matest A129 Rock shear box apparatus. The shear strength of preexisting ruptures was measured under a fixed normal stress component. The anisotropy of the shear strength of the joints and fault surfaces reached more than 60 % of maximum strength, which is a very important value for solving structural loads. The shear strength was analyzed with polar plots. The pattern of the real joints typically showed a teardrop shape with one peak of strength in a certain direction and a minimum in the opposite direction. On the contrary, striated fault surfaces are characterized by two axial directions of minimal shear strength, i.e., longitudinal and transverse, and by two axial oblique directions with maximal shear strength, so the strength distribution in the polar graph has a four-cornered shape. The study showed that the anisotropy of the shear strength of various types of ruptures is their important feature.","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of rock ruptures shear strength anisotropy\",\"authors\":\"Tomáš Proisl\",\"doi\":\"10.13168/agg.2022.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joints significantly reduce rock cohesion compared to unfractured rock, but the question is what effect the possible anisotropy of the shear strength of different types of rupture has on possible subsequent failure. Both natural samples of granodiorite with natural joints and fault surfaces and gypsum models have been tested on the Matest A129 Rock shear box apparatus. The shear strength of preexisting ruptures was measured under a fixed normal stress component. The anisotropy of the shear strength of the joints and fault surfaces reached more than 60 % of maximum strength, which is a very important value for solving structural loads. The shear strength was analyzed with polar plots. The pattern of the real joints typically showed a teardrop shape with one peak of strength in a certain direction and a minimum in the opposite direction. On the contrary, striated fault surfaces are characterized by two axial directions of minimal shear strength, i.e., longitudinal and transverse, and by two axial oblique directions with maximal shear strength, so the strength distribution in the polar graph has a four-cornered shape. The study showed that the anisotropy of the shear strength of various types of ruptures is their important feature.\",\"PeriodicalId\":50899,\"journal\":{\"name\":\"Acta Geodynamica et Geomaterialia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodynamica et Geomaterialia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.13168/agg.2022.0001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodynamica et Geomaterialia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.13168/agg.2022.0001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

与未破裂的岩石相比,节理显著降低了岩石的内聚力,但问题是不同类型破裂的剪切强度的可能各向异性对可能的后续破坏有什么影响。具有天然节理和断层面的花岗闪长岩天然样品以及石膏模型均已在Matest A129岩石剪切箱设备上进行了测试。预先存在的断裂的剪切强度是在固定的法向应力分量下测量的。节理和断层面的抗剪强度各向异性达到最大强度的60%以上,这对于求解结构荷载是一个非常重要的值。剪切强度用极坐标图进行了分析。真实接头的模式通常显示出泪滴形状,在特定方向上具有一个强度峰值,在相反方向上具有最小值。相反,条纹断层表面的特征是具有最小剪切强度的两个轴向方向,即纵向和横向,以及具有最大剪切强度的轴向倾斜方向,因此极坐标图中的强度分布具有四角形状。研究表明,不同类型断裂的抗剪强度各向异性是其重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of rock ruptures shear strength anisotropy
Joints significantly reduce rock cohesion compared to unfractured rock, but the question is what effect the possible anisotropy of the shear strength of different types of rupture has on possible subsequent failure. Both natural samples of granodiorite with natural joints and fault surfaces and gypsum models have been tested on the Matest A129 Rock shear box apparatus. The shear strength of preexisting ruptures was measured under a fixed normal stress component. The anisotropy of the shear strength of the joints and fault surfaces reached more than 60 % of maximum strength, which is a very important value for solving structural loads. The shear strength was analyzed with polar plots. The pattern of the real joints typically showed a teardrop shape with one peak of strength in a certain direction and a minimum in the opposite direction. On the contrary, striated fault surfaces are characterized by two axial directions of minimal shear strength, i.e., longitudinal and transverse, and by two axial oblique directions with maximal shear strength, so the strength distribution in the polar graph has a four-cornered shape. The study showed that the anisotropy of the shear strength of various types of ruptures is their important feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodynamica et Geomaterialia
Acta Geodynamica et Geomaterialia 地学-地球化学与地球物理
CiteScore
2.30
自引率
0.00%
发文量
12
期刊介绍: Acta geodynamica et geomaterialia (AGG) has been published by the Institute of Rock Structures and Mechanics, Czech Academy of Sciences since 2004, formerly known as Acta Montana published from the beginning of sixties till 2003. Approximately 40 articles per year in four issues are published, covering observations related to central Europe and new theoretical developments and interpretations in these disciplines. It is possible to publish occasionally research articles from other regions of the world, only if they present substantial advance in methodological or theoretical development with worldwide impact. The Board of Editors is international in representation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信