CUDA实现的antlion优化算法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
D. Davendra, Magdalena Metlicka, M. Bialic-Davendra
{"title":"CUDA实现的antlion优化算法","authors":"D. Davendra, Magdalena Metlicka, M. Bialic-Davendra","doi":"10.1080/17445760.2023.2172576","DOIUrl":null,"url":null,"abstract":"A parallel version of Ant Lion Optimizer algorithm using the CUDA platform is introduced in this paper. Efficient kernel, memory and thread management approaches have been developed to maximize its performance. The new algorithm was tested against the canonical algorithm on 15 scalable problems of different sizes, with a total of 172 experiments. The solution costs and the execution times were compared using relative percentage difference and significance tests. The results showed the CUDA antlion algorithm significantly improves upon the execution time, while retaining the same solution quality.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CUDA implementation of the antlion optimization algorithm\",\"authors\":\"D. Davendra, Magdalena Metlicka, M. Bialic-Davendra\",\"doi\":\"10.1080/17445760.2023.2172576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parallel version of Ant Lion Optimizer algorithm using the CUDA platform is introduced in this paper. Efficient kernel, memory and thread management approaches have been developed to maximize its performance. The new algorithm was tested against the canonical algorithm on 15 scalable problems of different sizes, with a total of 172 experiments. The solution costs and the execution times were compared using relative percentage difference and significance tests. The results showed the CUDA antlion algorithm significantly improves upon the execution time, while retaining the same solution quality.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2023.2172576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2023.2172576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于CUDA平台的并行版蚁狮优化算法。高效的内核、内存和线程管理方法已经开发出来,以最大限度地提高其性能。新算法在15个不同规模的可扩展问题上与规范算法进行了对比测试,共进行了172次实验。使用相对百分比差异和显著性测试比较了解决方案成本和执行时间。结果表明,CUDA antlion算法在保持相同解质量的情况下,在执行时间上有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CUDA implementation of the antlion optimization algorithm
A parallel version of Ant Lion Optimizer algorithm using the CUDA platform is introduced in this paper. Efficient kernel, memory and thread management approaches have been developed to maximize its performance. The new algorithm was tested against the canonical algorithm on 15 scalable problems of different sizes, with a total of 172 experiments. The solution costs and the execution times were compared using relative percentage difference and significance tests. The results showed the CUDA antlion algorithm significantly improves upon the execution time, while retaining the same solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信