对比图相似网络

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Luzhi Wang, Yizhen Zheng, Di Jin, Fuyi Li, Yongliang Qiao, Shirui Pan
{"title":"对比图相似网络","authors":"Luzhi Wang, Yizhen Zheng, Di Jin, Fuyi Li, Yongliang Qiao, Shirui Pan","doi":"10.1145/3580511","DOIUrl":null,"url":null,"abstract":"Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage graph neural networks as backbones for learning graph representations but have not well captured the complex information inside data, and (2) they employ a cross-graph attention mechanism for graph similarity learning, which is computationally expensive. Taking these limitations into consideration, a method for graph similarity learning is devised in this study, namely, Contrastive Graph Similarity Network (CGSim). To enhance graph similarity learning, CGSim makes use of the complementary information of two input graphs and captures pairwise relations in a contrastive learning framework. By developing a dual contrastive learning module with a node-graph matching and a graph-graph matching mechanism, our method significantly reduces the quadratic time complexity for cross-graph interaction modeling to linear time complexity. Jointly learning in an end-to-end framework, the graph representation embedding module and the well-designed contrastive learning module can be beneficial to one another. A comprehensive series of experiments indicate that CGSim outperforms state-of-the-art baselines on six datasets and significantly reduces the computational cost, which demonstrates our CGSim model’s superiority over other baselines.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Contrastive Graph Similarity Networks\",\"authors\":\"Luzhi Wang, Yizhen Zheng, Di Jin, Fuyi Li, Yongliang Qiao, Shirui Pan\",\"doi\":\"10.1145/3580511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage graph neural networks as backbones for learning graph representations but have not well captured the complex information inside data, and (2) they employ a cross-graph attention mechanism for graph similarity learning, which is computationally expensive. Taking these limitations into consideration, a method for graph similarity learning is devised in this study, namely, Contrastive Graph Similarity Network (CGSim). To enhance graph similarity learning, CGSim makes use of the complementary information of two input graphs and captures pairwise relations in a contrastive learning framework. By developing a dual contrastive learning module with a node-graph matching and a graph-graph matching mechanism, our method significantly reduces the quadratic time complexity for cross-graph interaction modeling to linear time complexity. Jointly learning in an end-to-end framework, the graph representation embedding module and the well-designed contrastive learning module can be beneficial to one another. A comprehensive series of experiments indicate that CGSim outperforms state-of-the-art baselines on six datasets and significantly reduces the computational cost, which demonstrates our CGSim model’s superiority over other baselines.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580511\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580511","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

图相似性学习是图理论和分析中的一个重要而基础的问题,已被应用于多个领域,包括对象跟踪、推荐系统、相似性搜索等。最近使用深度学习的图相似性学习方法通常有两个不足:(1)它们利用图神经网络作为学习图表示的骨干,但没有很好地捕捉数据中的复杂信息;(2)它们使用交叉图注意力机制进行图相似性学习,这在计算上是昂贵的。考虑到这些局限性,本研究设计了一种图相似性学习方法,即对比图相似性网络(CGSim)。为了增强图的相似性学习,CGSim利用两个输入图的互补信息,并在对比学习框架中捕获成对关系。通过开发具有节点图匹配和图图匹配机制的双重对比学习模块,我们的方法将跨图交互建模的二次时间复杂度显著降低为线性时间复杂度。在端到端框架中的联合学习,图表示嵌入模块和设计良好的对比学习模块可以相互有益。一系列综合实验表明,CGSim在六个数据集上优于最先进的基线,并显著降低了计算成本,这表明我们的CGSim模型优于其他基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Graph Similarity Networks
Graph similarity learning is a significant and fundamental issue in the theory and analysis of graphs, which has been applied in a variety of fields, including object tracking, recommender systems, similarity search, etc. Recent methods for graph similarity learning that utilize deep learning typically share two deficiencies: (1) they leverage graph neural networks as backbones for learning graph representations but have not well captured the complex information inside data, and (2) they employ a cross-graph attention mechanism for graph similarity learning, which is computationally expensive. Taking these limitations into consideration, a method for graph similarity learning is devised in this study, namely, Contrastive Graph Similarity Network (CGSim). To enhance graph similarity learning, CGSim makes use of the complementary information of two input graphs and captures pairwise relations in a contrastive learning framework. By developing a dual contrastive learning module with a node-graph matching and a graph-graph matching mechanism, our method significantly reduces the quadratic time complexity for cross-graph interaction modeling to linear time complexity. Jointly learning in an end-to-end framework, the graph representation embedding module and the well-designed contrastive learning module can be beneficial to one another. A comprehensive series of experiments indicate that CGSim outperforms state-of-the-art baselines on six datasets and significantly reduces the computational cost, which demonstrates our CGSim model’s superiority over other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on the Web
ACM Transactions on the Web 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
26
审稿时长
7.5 months
期刊介绍: Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML. In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces. Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信