Nating Wang, H. Tian, Yongci Li, R. Wu, Jiangtao Luo, Zhong Wang
{"title":"动态数量性状QTL定位中显著性阈值的快速计算","authors":"Nating Wang, H. Tian, Yongci Li, R. Wu, Jiangtao Luo, Zhong Wang","doi":"10.4172/2155-6180.1000329","DOIUrl":null,"url":null,"abstract":"Functional Mapping is a popular statistical method in QTL mapping studies for longitudinal data. The threshold for declaring statistical significance of a QTL is commonly obtained through permutation tests, which can be time consuming. To improve the computational efficiency of a permutation test of mixture models used in Functional Mapping, we first quantified the correlation between QTL and longitudinal data, using a curve clustering method. Then, the QTLs which are highly correlated with the outcome were computed in the improved permutation tests. As a result, it reduces the amount of computation in permutation tests and speeds up the computation for Functional Mapping analysis. Simulation studies and real data analysis were conducted to demonstrate that the proposed approach can greatly improve the computational efficiency of QTL mapping without loss of accuracy.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":" ","pages":"0-0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Computation of Significance Threshold in QTL Mapping of DynamicQuantitative Traits\",\"authors\":\"Nating Wang, H. Tian, Yongci Li, R. Wu, Jiangtao Luo, Zhong Wang\",\"doi\":\"10.4172/2155-6180.1000329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional Mapping is a popular statistical method in QTL mapping studies for longitudinal data. The threshold for declaring statistical significance of a QTL is commonly obtained through permutation tests, which can be time consuming. To improve the computational efficiency of a permutation test of mixture models used in Functional Mapping, we first quantified the correlation between QTL and longitudinal data, using a curve clustering method. Then, the QTLs which are highly correlated with the outcome were computed in the improved permutation tests. As a result, it reduces the amount of computation in permutation tests and speeds up the computation for Functional Mapping analysis. Simulation studies and real data analysis were conducted to demonstrate that the proposed approach can greatly improve the computational efficiency of QTL mapping without loss of accuracy.\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\" \",\"pages\":\"0-0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6180.1000329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Computation of Significance Threshold in QTL Mapping of DynamicQuantitative Traits
Functional Mapping is a popular statistical method in QTL mapping studies for longitudinal data. The threshold for declaring statistical significance of a QTL is commonly obtained through permutation tests, which can be time consuming. To improve the computational efficiency of a permutation test of mixture models used in Functional Mapping, we first quantified the correlation between QTL and longitudinal data, using a curve clustering method. Then, the QTLs which are highly correlated with the outcome were computed in the improved permutation tests. As a result, it reduces the amount of computation in permutation tests and speeds up the computation for Functional Mapping analysis. Simulation studies and real data analysis were conducted to demonstrate that the proposed approach can greatly improve the computational efficiency of QTL mapping without loss of accuracy.