{"title":"在图形中签名的总强大罗马统治","authors":"M. Hajjari, S. M. Sheikholeslami","doi":"10.47443/dml.2022.020","DOIUrl":null,"url":null,"abstract":"Let G = ( V, E ) be a finite and simple graph of order n and maximum degree ∆ . A signed total strong Roman dominating function on G is a function f : V → {− 1 , 1 , 2 , . . . , (cid:100) ∆ / 2 (cid:101) + 1 } satisfying the conditions: (i) for every vertex v of G , (cid:80) u ∈ N ( v ) f ( u ) ≥ 1 , where N ( v ) is the open neighborhood of v , and (ii) every vertex v satisfying f ( v ) = − 1 is adjacent to at least one vertex u such that f ( u ) ≥ 1 + (cid:6) | N ( u ) ∩ V − 1 | / 2 (cid:7) , where V − 1 = { v ∈ V | f ( v ) = − 1 } . The signed total strong Roman domination number of G , γ tssR ( G ) , is the minimum weight of a signed total strong Roman dominating function. In this paper, some bounds for this parameter are presented.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed Total Strong Roman Domination in Graphs\",\"authors\":\"M. Hajjari, S. M. Sheikholeslami\",\"doi\":\"10.47443/dml.2022.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = ( V, E ) be a finite and simple graph of order n and maximum degree ∆ . A signed total strong Roman dominating function on G is a function f : V → {− 1 , 1 , 2 , . . . , (cid:100) ∆ / 2 (cid:101) + 1 } satisfying the conditions: (i) for every vertex v of G , (cid:80) u ∈ N ( v ) f ( u ) ≥ 1 , where N ( v ) is the open neighborhood of v , and (ii) every vertex v satisfying f ( v ) = − 1 is adjacent to at least one vertex u such that f ( u ) ≥ 1 + (cid:6) | N ( u ) ∩ V − 1 | / 2 (cid:7) , where V − 1 = { v ∈ V | f ( v ) = − 1 } . The signed total strong Roman domination number of G , γ tssR ( G ) , is the minimum weight of a signed total strong Roman dominating function. In this paper, some bounds for this parameter are presented.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G = (V, E)为n阶、最大次为∆的有限简单图。G上的有符号全强罗马支配函数是函数f: V→{−1,1,2,…(cid: 100)∆/ 2 (cid: 101) + 1}满足条件:(i)为每个顶点v (G) (cid: 80) u N (v)∈f (u)≥1,N v (v)的开放社区,和(2)每个顶点v满足f (v) =−1是相邻的至少一个顶点u, f (u)≥1 + N (cid: 6) | (u)∩v−1 | / 2 (cid: 7), v−1 = {v∈f (v) | =−1}。G的有符号总强罗马支配数γ tssR (G)是有符号总强罗马支配函数的最小权值。本文给出了该参数的一些边界。
Let G = ( V, E ) be a finite and simple graph of order n and maximum degree ∆ . A signed total strong Roman dominating function on G is a function f : V → {− 1 , 1 , 2 , . . . , (cid:100) ∆ / 2 (cid:101) + 1 } satisfying the conditions: (i) for every vertex v of G , (cid:80) u ∈ N ( v ) f ( u ) ≥ 1 , where N ( v ) is the open neighborhood of v , and (ii) every vertex v satisfying f ( v ) = − 1 is adjacent to at least one vertex u such that f ( u ) ≥ 1 + (cid:6) | N ( u ) ∩ V − 1 | / 2 (cid:7) , where V − 1 = { v ∈ V | f ( v ) = − 1 } . The signed total strong Roman domination number of G , γ tssR ( G ) , is the minimum weight of a signed total strong Roman dominating function. In this paper, some bounds for this parameter are presented.