用修正拉普拉斯Adomian分解法求解Volterra积分和积分微分方程

IF 0.3 Q4 MATHEMATICS, APPLIED
D. Rani, V. Mishra
{"title":"用修正拉普拉斯Adomian分解法求解Volterra积分和积分微分方程","authors":"D. Rani, V. Mishra","doi":"10.2478/jamsi-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"15 1","pages":"18 - 5"},"PeriodicalIF":0.3000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/jamsi-2019-0001","citationCount":"12","resultStr":"{\"title\":\"Solutions of Volterra integral and integro-differential equations using modified Laplace Adomian decomposition method\",\"authors\":\"D. Rani, V. Mishra\",\"doi\":\"10.2478/jamsi-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":\"15 1\",\"pages\":\"18 - 5\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/jamsi-2019-0001\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了基于Bernstein多项式的拉普拉斯Adomian分解方法的一种有效的新改进,用于求解非线性Volterra积分和积分-微分方程。通过比较Volterra积分、第一类和第二类积分微分方程的三个不同实例的精确解和近似解,验证了所提思想的性能和能力。表格和图表显示的结果证明了我们方法的准确性。结论是非正交多项式也可用于拉普拉斯阿多米安分解方法。此外,还对改进后的算法进行了收敛性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions of Volterra integral and integro-differential equations using modified Laplace Adomian decomposition method
Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信