{"title":"关于可解群的幂零子群的一个结果","authors":"Yong Yang","doi":"10.22108/IJGT.2021.128455.1690","DOIUrl":null,"url":null,"abstract":"Heineken [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel), 56 no. 5 (1991) 417--423.] studied the order of the nilpotent subgroups of the largest order of a solvable group. We point out an error, and thus refute the proof of the main result of [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel)}, 56 no. 5 (1991) 417--423.].","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a result of nilpotent subgroups of solvable groups\",\"authors\":\"Yong Yang\",\"doi\":\"10.22108/IJGT.2021.128455.1690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heineken [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel), 56 no. 5 (1991) 417--423.] studied the order of the nilpotent subgroups of the largest order of a solvable group. We point out an error, and thus refute the proof of the main result of [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel)}, 56 no. 5 (1991) 417--423.].\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2021.128455.1690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.128455.1690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a result of nilpotent subgroups of solvable groups
Heineken [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel), 56 no. 5 (1991) 417--423.] studied the order of the nilpotent subgroups of the largest order of a solvable group. We point out an error, and thus refute the proof of the main result of [H. Heineken, Nilpotent subgroups of finite soluble groups, Arch. Math.(Basel)}, 56 no. 5 (1991) 417--423.].
期刊介绍:
International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.