应用软计算算法诊断心血管疾病

Q3 Medicine
P. Mathur, Tanu Sharma, K. Veer
{"title":"应用软计算算法诊断心血管疾病","authors":"P. Mathur, Tanu Sharma, K. Veer","doi":"10.2174/1574362417666220518120229","DOIUrl":null,"url":null,"abstract":"\n\nElectrocardiogram (ECG) is widely used in the healthcare domain because of its usage as a diagnostics tool for several cardiovascular diseases. It becomes essential to study and analyse the ECG data with the help of classification techniques. In this review paper, a brief overview of ECG signal information is presented. Various approaches for diagnosing cardiovascular diseases have been discussed, along with the need for accurate ECG signal analysis. These approaches are mainly based on the principles of machine learning and deep learning. The advantages and limitations of these techniques in the detection of cardiovascular diseases are presented within the scope of future work. This study can be helpful for researchers in bridging the gap between current approaches and future techniques for the detection of arrhythmia conditions.\n","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG Diagnosis for Cardiovascular Diseases Using Soft Computing Algorithms\",\"authors\":\"P. Mathur, Tanu Sharma, K. Veer\",\"doi\":\"10.2174/1574362417666220518120229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nElectrocardiogram (ECG) is widely used in the healthcare domain because of its usage as a diagnostics tool for several cardiovascular diseases. It becomes essential to study and analyse the ECG data with the help of classification techniques. In this review paper, a brief overview of ECG signal information is presented. Various approaches for diagnosing cardiovascular diseases have been discussed, along with the need for accurate ECG signal analysis. These approaches are mainly based on the principles of machine learning and deep learning. The advantages and limitations of these techniques in the detection of cardiovascular diseases are presented within the scope of future work. This study can be helpful for researchers in bridging the gap between current approaches and future techniques for the detection of arrhythmia conditions.\\n\",\"PeriodicalId\":10868,\"journal\":{\"name\":\"Current Signal Transduction Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Signal Transduction Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574362417666220518120229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574362417666220518120229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

心电图(ECG)作为多种心血管疾病的诊断工具,在医疗保健领域有着广泛的应用。利用分类技术对心电数据进行研究和分析是十分必要的。本文简要介绍了心电信号信息的研究概况。本文讨论了诊断心血管疾病的各种方法,以及对准确心电信号分析的需要。这些方法主要基于机器学习和深度学习的原理。在未来的工作范围内,介绍了这些技术在检测心血管疾病方面的优点和局限性。这项研究可以帮助研究人员弥合当前方法和未来检测心律失常的技术之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG Diagnosis for Cardiovascular Diseases Using Soft Computing Algorithms
Electrocardiogram (ECG) is widely used in the healthcare domain because of its usage as a diagnostics tool for several cardiovascular diseases. It becomes essential to study and analyse the ECG data with the help of classification techniques. In this review paper, a brief overview of ECG signal information is presented. Various approaches for diagnosing cardiovascular diseases have been discussed, along with the need for accurate ECG signal analysis. These approaches are mainly based on the principles of machine learning and deep learning. The advantages and limitations of these techniques in the detection of cardiovascular diseases are presented within the scope of future work. This study can be helpful for researchers in bridging the gap between current approaches and future techniques for the detection of arrhythmia conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders. The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信