{"title":"基于模糊贝叶斯网络的过程变异性因素建模与分析方法","authors":"Anwesa Kar, G. Sharma, R. Rai","doi":"10.1108/ijqrm-08-2021-0281","DOIUrl":null,"url":null,"abstract":"PurposeIn order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is required. However, with insufficient/incomplete numerical data, it is not possible to carry out in-depth process analysis. This paper presents a qualitative framework for analyzing factors causing PV and estimating their influence on overall performance of the process.Design/methodology/approachFuzzy analytic hierarchy process is used to evaluate the weight of each factor and Bayesian network (BN) is utilized to address the uncertainty and conditional dependencies among factors in each step of the process. The weighted values are fed into the BN for evaluating the impact of each factor to the process. A three axiom-based approach is utilized to partially validate the proposed model.FindingsA case study is conducted on fused filament fabrication (FFF) process in order to demonstrate the applicability of the proposed technique. The result analysis indicates that the proposed model can determine the contribution of each factor and identify the critical factor causing variability in the FFF process. It can also helps in estimating the sigma level, one of the crucial performance measures of a process.Research limitations/implicationsThe proposed methodology is aimed to predict the process quality qualitatively due to limited historical quantitative data. Hence, the quality metric is required to be updated with the help of empirical/field data of PV over a period of operational time. Since the proposed method is based on qualitative analysis framework, the subjectivities of judgments in estimating factor weights are involved. Though a fuzzy-based approach has been used in this paper to minimize such subjectivity, however more advanced MCDM techniques can be developed for factor weight evaluation.Practical implicationsAs the proposed methodology uses qualitative data for analysis, it is extremely beneficial while dealing with the issue of scarcity of experimental data.Social implicationsThe prediction of the process quality and understanding of difference between product target and achieved reliability before the product fabrication will help the process designer in correcting/modifying the processes in advance hence preventing substantial amount of losses that may happen due to rework and scraping of the products at a later stage.Originality/valueThis qualitative analysis will deal with the issue of data unavailability across the industry. It will help the process designer in identifying root cause of the PV problem and improving performance of the process.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fuzzy Bayesian network-based approach for modeling and analyzing factors causing process variability\",\"authors\":\"Anwesa Kar, G. Sharma, R. Rai\",\"doi\":\"10.1108/ijqrm-08-2021-0281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeIn order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is required. However, with insufficient/incomplete numerical data, it is not possible to carry out in-depth process analysis. This paper presents a qualitative framework for analyzing factors causing PV and estimating their influence on overall performance of the process.Design/methodology/approachFuzzy analytic hierarchy process is used to evaluate the weight of each factor and Bayesian network (BN) is utilized to address the uncertainty and conditional dependencies among factors in each step of the process. The weighted values are fed into the BN for evaluating the impact of each factor to the process. A three axiom-based approach is utilized to partially validate the proposed model.FindingsA case study is conducted on fused filament fabrication (FFF) process in order to demonstrate the applicability of the proposed technique. The result analysis indicates that the proposed model can determine the contribution of each factor and identify the critical factor causing variability in the FFF process. It can also helps in estimating the sigma level, one of the crucial performance measures of a process.Research limitations/implicationsThe proposed methodology is aimed to predict the process quality qualitatively due to limited historical quantitative data. Hence, the quality metric is required to be updated with the help of empirical/field data of PV over a period of operational time. Since the proposed method is based on qualitative analysis framework, the subjectivities of judgments in estimating factor weights are involved. Though a fuzzy-based approach has been used in this paper to minimize such subjectivity, however more advanced MCDM techniques can be developed for factor weight evaluation.Practical implicationsAs the proposed methodology uses qualitative data for analysis, it is extremely beneficial while dealing with the issue of scarcity of experimental data.Social implicationsThe prediction of the process quality and understanding of difference between product target and achieved reliability before the product fabrication will help the process designer in correcting/modifying the processes in advance hence preventing substantial amount of losses that may happen due to rework and scraping of the products at a later stage.Originality/valueThis qualitative analysis will deal with the issue of data unavailability across the industry. It will help the process designer in identifying root cause of the PV problem and improving performance of the process.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-08-2021-0281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-08-2021-0281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
A fuzzy Bayesian network-based approach for modeling and analyzing factors causing process variability
PurposeIn order to minimize the impact of variability on performance of the process, proper understanding of factors interdependencies and their impact on process variability (PV) is required. However, with insufficient/incomplete numerical data, it is not possible to carry out in-depth process analysis. This paper presents a qualitative framework for analyzing factors causing PV and estimating their influence on overall performance of the process.Design/methodology/approachFuzzy analytic hierarchy process is used to evaluate the weight of each factor and Bayesian network (BN) is utilized to address the uncertainty and conditional dependencies among factors in each step of the process. The weighted values are fed into the BN for evaluating the impact of each factor to the process. A three axiom-based approach is utilized to partially validate the proposed model.FindingsA case study is conducted on fused filament fabrication (FFF) process in order to demonstrate the applicability of the proposed technique. The result analysis indicates that the proposed model can determine the contribution of each factor and identify the critical factor causing variability in the FFF process. It can also helps in estimating the sigma level, one of the crucial performance measures of a process.Research limitations/implicationsThe proposed methodology is aimed to predict the process quality qualitatively due to limited historical quantitative data. Hence, the quality metric is required to be updated with the help of empirical/field data of PV over a period of operational time. Since the proposed method is based on qualitative analysis framework, the subjectivities of judgments in estimating factor weights are involved. Though a fuzzy-based approach has been used in this paper to minimize such subjectivity, however more advanced MCDM techniques can be developed for factor weight evaluation.Practical implicationsAs the proposed methodology uses qualitative data for analysis, it is extremely beneficial while dealing with the issue of scarcity of experimental data.Social implicationsThe prediction of the process quality and understanding of difference between product target and achieved reliability before the product fabrication will help the process designer in correcting/modifying the processes in advance hence preventing substantial amount of losses that may happen due to rework and scraping of the products at a later stage.Originality/valueThis qualitative analysis will deal with the issue of data unavailability across the industry. It will help the process designer in identifying root cause of the PV problem and improving performance of the process.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining