用有限元法求解热工问题

Q1 Engineering
Lubov Anikanova, O. Volkova, A. Kurmangalieva, Nikita Mesheulov
{"title":"用有限元法求解热工问题","authors":"Lubov Anikanova, O. Volkova, A. Kurmangalieva, Nikita Mesheulov","doi":"10.23968/2500-0055-2021-6-3-03-10","DOIUrl":null,"url":null,"abstract":"Introduction: In the course of the study, we examined energy-efficient and environmentally friendly heat-insulating materials based on gypsum and gypsum-containing primary components. Purpose of the study: We aimed to assess the effectiveness of using gypsum materials in wall structures, by using the finite element method based on the ANSYS Steady State Thermal module. Porous materials of different densities (structural, structural and heat-insulating, and heatinsulating gypsum concrete) were used as wall materials. These materials were obtained as a result of the interaction between residual sulfuric acid adsorbed on the grains of “acidic” fluoroanhydrite and carbonate flour. Methods: The finite element method based on the ANSYS Steady State Thermal module was used. The thermal conductivity of the structures was evaluated in a three-dimensional coordinate system. The experimental values of thermal and physical characteristics were adopted for the walling fragments. Results: The problem was solved numerically, by using the finite element method based on the ANSYS Steady State Thermal module. We established that the developed structural and heat-insulating gypsum concrete is more effective since, under the set design conditions, the temperature of the inner surface of such a wall at the minimum (510 mm) and maximum (770 mm) structure thickness exceeds the temperature of the inner surface of walls made of different materials.","PeriodicalId":52295,"journal":{"name":"Architecture and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SOLVING HEAT ENGINEERING PROBLEMS USING THE FINITE ELEMENT METHOD\",\"authors\":\"Lubov Anikanova, O. Volkova, A. Kurmangalieva, Nikita Mesheulov\",\"doi\":\"10.23968/2500-0055-2021-6-3-03-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: In the course of the study, we examined energy-efficient and environmentally friendly heat-insulating materials based on gypsum and gypsum-containing primary components. Purpose of the study: We aimed to assess the effectiveness of using gypsum materials in wall structures, by using the finite element method based on the ANSYS Steady State Thermal module. Porous materials of different densities (structural, structural and heat-insulating, and heatinsulating gypsum concrete) were used as wall materials. These materials were obtained as a result of the interaction between residual sulfuric acid adsorbed on the grains of “acidic” fluoroanhydrite and carbonate flour. Methods: The finite element method based on the ANSYS Steady State Thermal module was used. The thermal conductivity of the structures was evaluated in a three-dimensional coordinate system. The experimental values of thermal and physical characteristics were adopted for the walling fragments. Results: The problem was solved numerically, by using the finite element method based on the ANSYS Steady State Thermal module. We established that the developed structural and heat-insulating gypsum concrete is more effective since, under the set design conditions, the temperature of the inner surface of such a wall at the minimum (510 mm) and maximum (770 mm) structure thickness exceeds the temperature of the inner surface of walls made of different materials.\",\"PeriodicalId\":52295,\"journal\":{\"name\":\"Architecture and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architecture and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23968/2500-0055-2021-6-3-03-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23968/2500-0055-2021-6-3-03-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

简介:在研究过程中,我们考察了基于石膏和含有主要成分的石膏的节能环保隔热材料。研究目的:我们旨在通过使用基于ANSYS稳态热模块的有限元方法,评估石膏材料在墙体结构中的有效性。采用不同密度的多孔材料(结构材料、结构隔热材料和隔热石膏混凝土)作为墙体材料。这些材料是由于吸附在“酸性”氟石膏颗粒上的残余硫酸和碳酸粉之间的相互作用而获得的。方法:采用基于ANSYS稳态热模块的有限元方法。在三维坐标系中评估了结构的热导率。墙体碎片采用了热特性和物理特性的实验值。结果:采用基于ANSYS稳态热模块的有限元方法,对该问题进行了数值求解。我们确定,开发的结构隔热石膏混凝土更有效,因为在设定的设计条件下,这种墙的内表面在最小(510毫米)和最大(770毫米)结构厚度下的温度超过了由不同材料制成的墙的内表面的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLVING HEAT ENGINEERING PROBLEMS USING THE FINITE ELEMENT METHOD
Introduction: In the course of the study, we examined energy-efficient and environmentally friendly heat-insulating materials based on gypsum and gypsum-containing primary components. Purpose of the study: We aimed to assess the effectiveness of using gypsum materials in wall structures, by using the finite element method based on the ANSYS Steady State Thermal module. Porous materials of different densities (structural, structural and heat-insulating, and heatinsulating gypsum concrete) were used as wall materials. These materials were obtained as a result of the interaction between residual sulfuric acid adsorbed on the grains of “acidic” fluoroanhydrite and carbonate flour. Methods: The finite element method based on the ANSYS Steady State Thermal module was used. The thermal conductivity of the structures was evaluated in a three-dimensional coordinate system. The experimental values of thermal and physical characteristics were adopted for the walling fragments. Results: The problem was solved numerically, by using the finite element method based on the ANSYS Steady State Thermal module. We established that the developed structural and heat-insulating gypsum concrete is more effective since, under the set design conditions, the temperature of the inner surface of such a wall at the minimum (510 mm) and maximum (770 mm) structure thickness exceeds the temperature of the inner surface of walls made of different materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Architecture and Engineering
Architecture and Engineering Engineering-Architecture
CiteScore
1.80
自引率
0.00%
发文量
26
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信