{"title":"REW法挤压双金属坯料成形过程模拟","authors":"A. Schrek, A. Brusilová, P. Sejč, B. Vanko","doi":"10.36547/ams.27.4.1254","DOIUrl":null,"url":null,"abstract":"The bimetallic joining elements were designed for lap joints of thin metallic (Fe-Fe, Fe-Al) as well as metallic – nonmetallic (Fe-PMMA, Al-PMMA) sheets by Resistance Element Welding (REW). The Cu tubes with an outer diameter of 4 mm, wall thickness of 0.5 mm, and a length of 11 mm filled with a solder Sn60Pb40 were used for the bimetallic joining elements producing. The required shape of joining elements is obtained by cold forming. Simulation by ANSYS software was chosen for the optimization of the forming process and geometry of functional parts of the forming tool allowing to use only one extrusion forming operation. The simulation results are stresses, strains, and modification of cross-section geometry of elements for the three proposed forming modes. The geometry of functional parts of the forming tool was compared with the results of cross-section macroanalysis of joining elements.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FORMING PROCESS SIMULATION OF BIMETALLIC BILLET BY EXTRUSION FOR REW METHOD\",\"authors\":\"A. Schrek, A. Brusilová, P. Sejč, B. Vanko\",\"doi\":\"10.36547/ams.27.4.1254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bimetallic joining elements were designed for lap joints of thin metallic (Fe-Fe, Fe-Al) as well as metallic – nonmetallic (Fe-PMMA, Al-PMMA) sheets by Resistance Element Welding (REW). The Cu tubes with an outer diameter of 4 mm, wall thickness of 0.5 mm, and a length of 11 mm filled with a solder Sn60Pb40 were used for the bimetallic joining elements producing. The required shape of joining elements is obtained by cold forming. Simulation by ANSYS software was chosen for the optimization of the forming process and geometry of functional parts of the forming tool allowing to use only one extrusion forming operation. The simulation results are stresses, strains, and modification of cross-section geometry of elements for the three proposed forming modes. The geometry of functional parts of the forming tool was compared with the results of cross-section macroanalysis of joining elements.\",\"PeriodicalId\":44511,\"journal\":{\"name\":\"Acta Metallurgica Slovaca\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/ams.27.4.1254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.27.4.1254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
FORMING PROCESS SIMULATION OF BIMETALLIC BILLET BY EXTRUSION FOR REW METHOD
The bimetallic joining elements were designed for lap joints of thin metallic (Fe-Fe, Fe-Al) as well as metallic – nonmetallic (Fe-PMMA, Al-PMMA) sheets by Resistance Element Welding (REW). The Cu tubes with an outer diameter of 4 mm, wall thickness of 0.5 mm, and a length of 11 mm filled with a solder Sn60Pb40 were used for the bimetallic joining elements producing. The required shape of joining elements is obtained by cold forming. Simulation by ANSYS software was chosen for the optimization of the forming process and geometry of functional parts of the forming tool allowing to use only one extrusion forming operation. The simulation results are stresses, strains, and modification of cross-section geometry of elements for the three proposed forming modes. The geometry of functional parts of the forming tool was compared with the results of cross-section macroanalysis of joining elements.