多齿锯切几何参数和刀型对板材复合材料切割的影响:有限元研究

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING
A. Hassouna, S. Mzali, F. Zemzemi, S. Mezlini
{"title":"多齿锯切几何参数和刀型对板材复合材料切割的影响:有限元研究","authors":"A. Hassouna, S. Mzali, F. Zemzemi, S. Mezlini","doi":"10.1080/10910344.2021.1998829","DOIUrl":null,"url":null,"abstract":"Abstract Short glass fiber composites, particularly sheet molding compound (SMC) materials, are becoming increasingly important alternative in various contemporary aerospace, automotive, and electronic applications. For these manufacturing industries, the quality of the machined SMC composite is still a challenging target. The article proposes a new tool design with an offset between teeth to minimize friction, limit damage and promote chip removal when drilling composite materials. The effects of the tool’s geometric parameters, especially the rake, the inclination and the complementary side cutting edge angles on the material removal process, as well as the cutting and thrust forces, are investigated. A 3D finite element model of a representative multi-tooth tool is developed using the ABAQUS\\Explicit code. The results show that fine-tuning the geometric parameters of the tool reduces the induced machining damage and enhances the chip removal and the flow evolution. The rake angle has a significant influence on the cutting and thrust forces. However, both forces are insensitive to the inclination angle. The complementary side cutting edge angle influences only the thrust force. The presented outcomes not only give insights into the cutting process, but also improve the SMC machinability.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"26 1","pages":"95 - 119"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of geometrical parameters and tool pattern of multi-tooth sawing on cutting of sheet molding compound composite: FE study\",\"authors\":\"A. Hassouna, S. Mzali, F. Zemzemi, S. Mezlini\",\"doi\":\"10.1080/10910344.2021.1998829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Short glass fiber composites, particularly sheet molding compound (SMC) materials, are becoming increasingly important alternative in various contemporary aerospace, automotive, and electronic applications. For these manufacturing industries, the quality of the machined SMC composite is still a challenging target. The article proposes a new tool design with an offset between teeth to minimize friction, limit damage and promote chip removal when drilling composite materials. The effects of the tool’s geometric parameters, especially the rake, the inclination and the complementary side cutting edge angles on the material removal process, as well as the cutting and thrust forces, are investigated. A 3D finite element model of a representative multi-tooth tool is developed using the ABAQUS\\\\Explicit code. The results show that fine-tuning the geometric parameters of the tool reduces the induced machining damage and enhances the chip removal and the flow evolution. The rake angle has a significant influence on the cutting and thrust forces. However, both forces are insensitive to the inclination angle. The complementary side cutting edge angle influences only the thrust force. The presented outcomes not only give insights into the cutting process, but also improve the SMC machinability.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":\"26 1\",\"pages\":\"95 - 119\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2021.1998829\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1998829","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

摘要短玻璃纤维复合材料,特别是片状模压复合材料(SMC),在当代航空航天、汽车和电子等领域的应用日益重要。对于这些制造业来说,SMC复合材料的加工质量仍然是一个具有挑战性的目标。本文提出了一种新的刀具设计,在钻取复合材料时,齿间有偏移,可以最大限度地减少摩擦,限制损伤,促进切屑的去除。研究了刀具几何参数,特别是刀具前角、切削倾角和互补侧切削刃角对材料去除过程以及切削力和推力的影响。利用ABAQUS / Explicit程序建立了具有代表性的多齿刀具的三维有限元模型。结果表明,对刀具几何参数进行微调可降低切削损伤,促进切削屑的去除和流动演化。前倾角对切削力和推力有显著影响。然而,这两种力对倾角不敏感。互补侧切削刃角只影响推力。所提出的结果不仅对切削过程有深入的了解,而且还提高了SMC的可加工性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of geometrical parameters and tool pattern of multi-tooth sawing on cutting of sheet molding compound composite: FE study
Abstract Short glass fiber composites, particularly sheet molding compound (SMC) materials, are becoming increasingly important alternative in various contemporary aerospace, automotive, and electronic applications. For these manufacturing industries, the quality of the machined SMC composite is still a challenging target. The article proposes a new tool design with an offset between teeth to minimize friction, limit damage and promote chip removal when drilling composite materials. The effects of the tool’s geometric parameters, especially the rake, the inclination and the complementary side cutting edge angles on the material removal process, as well as the cutting and thrust forces, are investigated. A 3D finite element model of a representative multi-tooth tool is developed using the ABAQUS\Explicit code. The results show that fine-tuning the geometric parameters of the tool reduces the induced machining damage and enhances the chip removal and the flow evolution. The rake angle has a significant influence on the cutting and thrust forces. However, both forces are insensitive to the inclination angle. The complementary side cutting edge angle influences only the thrust force. The presented outcomes not only give insights into the cutting process, but also improve the SMC machinability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信