K. H. Monfared, G. MacGillivray, D. Olesky, P. van den Driessche
{"title":"加权有符号图的拉普拉斯矩阵的不等式","authors":"K. H. Monfared, G. MacGillivray, D. Olesky, P. van den Driessche","doi":"10.1515/spma-2019-0026","DOIUrl":null,"url":null,"abstract":"Abstract We study the sets of inertias achieved by Laplacian matrices of weighted signed graphs. First we characterize signed graphs with a unique Laplacian inertia. Then we show that there is a sufficiently small perturbation of the nonzero weights on the edges of any connected weighted signed graph so that all eigenvalues of its Laplacian matrix are simple. Next, we give upper bounds on the number of possible Laplacian inertias for signed graphs with a fixed flexibility τ (a combinatorial parameter of signed graphs), and show that these bounds are sharp for an infinite family of signed graphs. Finally, we provide upper bounds for the number of possible Laplacian inertias of signed graphs in terms of the number of vertices.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"7 1","pages":"327 - 342"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2019-0026","citationCount":"0","resultStr":"{\"title\":\"Inertias of Laplacian matrices of weighted signed graphs\",\"authors\":\"K. H. Monfared, G. MacGillivray, D. Olesky, P. van den Driessche\",\"doi\":\"10.1515/spma-2019-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the sets of inertias achieved by Laplacian matrices of weighted signed graphs. First we characterize signed graphs with a unique Laplacian inertia. Then we show that there is a sufficiently small perturbation of the nonzero weights on the edges of any connected weighted signed graph so that all eigenvalues of its Laplacian matrix are simple. Next, we give upper bounds on the number of possible Laplacian inertias for signed graphs with a fixed flexibility τ (a combinatorial parameter of signed graphs), and show that these bounds are sharp for an infinite family of signed graphs. Finally, we provide upper bounds for the number of possible Laplacian inertias of signed graphs in terms of the number of vertices.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"7 1\",\"pages\":\"327 - 342\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2019-0026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2019-0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2019-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inertias of Laplacian matrices of weighted signed graphs
Abstract We study the sets of inertias achieved by Laplacian matrices of weighted signed graphs. First we characterize signed graphs with a unique Laplacian inertia. Then we show that there is a sufficiently small perturbation of the nonzero weights on the edges of any connected weighted signed graph so that all eigenvalues of its Laplacian matrix are simple. Next, we give upper bounds on the number of possible Laplacian inertias for signed graphs with a fixed flexibility τ (a combinatorial parameter of signed graphs), and show that these bounds are sharp for an infinite family of signed graphs. Finally, we provide upper bounds for the number of possible Laplacian inertias of signed graphs in terms of the number of vertices.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.