{"title":"通过对抗性学习重塑城市配置的自动化城市规划:量化、生成和评估","authors":"Dongjie Wang, Yanjie Fu, Kunpeng Liu, Fanglan Chen, Pengyang Wang, Chang-Tien Lu","doi":"10.1145/3524302","DOIUrl":null,"url":null,"abstract":"Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: (1) how to define a quantitative land-use configuration? (2) how to automate configuration planning? (3) how to evaluate the quality of a generated configuration? In this article, we systematically address the three challenges. Specifically, (1) We define a land-use configuration as a longitude-latitude-channel tensor. (2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. In particular, we first construct spatial graphs using geographic and human mobility data crawled from websites to learn graph representations. We then combine each target area and its surrounding context representations as a tuple, and categorize all tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning framework, in which a generator takes the surrounding context representations as input to generate a land-use configuration, and a discriminator learns to distinguish between positive and negative samples. (3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 24"},"PeriodicalIF":1.2000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation\",\"authors\":\"Dongjie Wang, Yanjie Fu, Kunpeng Liu, Fanglan Chen, Pengyang Wang, Chang-Tien Lu\",\"doi\":\"10.1145/3524302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: (1) how to define a quantitative land-use configuration? (2) how to automate configuration planning? (3) how to evaluate the quality of a generated configuration? In this article, we systematically address the three challenges. Specifically, (1) We define a land-use configuration as a longitude-latitude-channel tensor. (2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. In particular, we first construct spatial graphs using geographic and human mobility data crawled from websites to learn graph representations. We then combine each target area and its surrounding context representations as a tuple, and categorize all tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning framework, in which a generator takes the surrounding context representations as input to generate a land-use configuration, and a discriminator learns to distinguish between positive and negative samples. (3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"9 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3524302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation
Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: (1) how to define a quantitative land-use configuration? (2) how to automate configuration planning? (3) how to evaluate the quality of a generated configuration? In this article, we systematically address the three challenges. Specifically, (1) We define a land-use configuration as a longitude-latitude-channel tensor. (2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. In particular, we first construct spatial graphs using geographic and human mobility data crawled from websites to learn graph representations. We then combine each target area and its surrounding context representations as a tuple, and categorize all tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning framework, in which a generator takes the surrounding context representations as input to generate a land-use configuration, and a discriminator learns to distinguish between positive and negative samples. (3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.