Wim Vancroonenburg , Patrick De Causmaecker , Greet Vanden Berghe
{"title":"动态、不确定环境下择期手术患者的机会约束住院安排","authors":"Wim Vancroonenburg , Patrick De Causmaecker , Greet Vanden Berghe","doi":"10.1016/j.orhc.2019.100196","DOIUrl":null,"url":null,"abstract":"<div><p>In the present contribution, a chance-constrained scheduling model is presented for determining admission dates of elective surgical patients. The admission scheduling model is defined considering a dynamic, stochastic decision-making environment. The primary aim of the model concerns the minimization of operating theatre costs and patient waiting times, while simultaneously avoiding bed shortages at a fixed certainty level through a chance-constrained formulation. This stochastic model is implemented by means of sample average approximation and is solved by a meta-heuristic algorithm. To illustrate the applicability of the model, the approach is used to implement four admission scheduling policies on this dynamic decision-making setting that are evaluated on different criteria in a computational study using simulation. The results show that the stochastic approach is able to account for the uncertainty in patients’ length of stay and surgical procedure duration, enabling it to avoid bed shortages while still optimizing operating theatre costs and patient waiting times.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"22 ","pages":"Article 100196"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.orhc.2019.100196","citationCount":"18","resultStr":"{\"title\":\"Chance-constrained admission scheduling of elective surgical patients in a dynamic, uncertain setting\",\"authors\":\"Wim Vancroonenburg , Patrick De Causmaecker , Greet Vanden Berghe\",\"doi\":\"10.1016/j.orhc.2019.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present contribution, a chance-constrained scheduling model is presented for determining admission dates of elective surgical patients. The admission scheduling model is defined considering a dynamic, stochastic decision-making environment. The primary aim of the model concerns the minimization of operating theatre costs and patient waiting times, while simultaneously avoiding bed shortages at a fixed certainty level through a chance-constrained formulation. This stochastic model is implemented by means of sample average approximation and is solved by a meta-heuristic algorithm. To illustrate the applicability of the model, the approach is used to implement four admission scheduling policies on this dynamic decision-making setting that are evaluated on different criteria in a computational study using simulation. The results show that the stochastic approach is able to account for the uncertainty in patients’ length of stay and surgical procedure duration, enabling it to avoid bed shortages while still optimizing operating theatre costs and patient waiting times.</p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"22 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.orhc.2019.100196\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692318300961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692318300961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Chance-constrained admission scheduling of elective surgical patients in a dynamic, uncertain setting
In the present contribution, a chance-constrained scheduling model is presented for determining admission dates of elective surgical patients. The admission scheduling model is defined considering a dynamic, stochastic decision-making environment. The primary aim of the model concerns the minimization of operating theatre costs and patient waiting times, while simultaneously avoiding bed shortages at a fixed certainty level through a chance-constrained formulation. This stochastic model is implemented by means of sample average approximation and is solved by a meta-heuristic algorithm. To illustrate the applicability of the model, the approach is used to implement four admission scheduling policies on this dynamic decision-making setting that are evaluated on different criteria in a computational study using simulation. The results show that the stochastic approach is able to account for the uncertainty in patients’ length of stay and surgical procedure duration, enabling it to avoid bed shortages while still optimizing operating theatre costs and patient waiting times.