素次群与贝特曼-霍恩猜想

IF 0.8 4区 数学 Q2 MATHEMATICS
Gareth A. Jones , Alexander K. Zvonkin
{"title":"素次群与贝特曼-霍恩猜想","authors":"Gareth A. Jones ,&nbsp;Alexander K. Zvonkin","doi":"10.1016/j.exmath.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>As a consequence of the classification of finite simple groups, the classification of permutation groups of prime degree is complete, apart from the question of when the natural degree <span><math><mrow><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> is prime. We present heuristic arguments and computational evidence based on the Bateman–Horn Conjecture to support a conjecture that for each prime <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> there are infinitely many primes of this form, even if one restricts to prime values of <span><math><mi>q</mi></math></span>. Similar arguments and results apply to the parameters of the simple groups <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>PSU</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>PSp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> which arise in the work of Dixon and Zalesskii on linear groups of prime degree.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Groups of prime degree and the Bateman–Horn Conjecture\",\"authors\":\"Gareth A. Jones ,&nbsp;Alexander K. Zvonkin\",\"doi\":\"10.1016/j.exmath.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a consequence of the classification of finite simple groups, the classification of permutation groups of prime degree is complete, apart from the question of when the natural degree <span><math><mrow><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> is prime. We present heuristic arguments and computational evidence based on the Bateman–Horn Conjecture to support a conjecture that for each prime <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> there are infinitely many primes of this form, even if one restricts to prime values of <span><math><mi>q</mi></math></span>. Similar arguments and results apply to the parameters of the simple groups <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>PSU</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>PSp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> which arise in the work of Dixon and Zalesskii on linear groups of prime degree.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000688\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000688","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

作为有限简单群分类的结果,除了PSLn(q)的自然次(qn−1)/(q−1)何时为素数问题外,素数阶置换群的分类是完备的。我们在batemann - horn猜想的基础上提出了启发式论证和计算证据来支持这样一个猜想,即对于每一个素数n≥3,存在无限多个这种形式的素数,即使我们限制于q的素数值。类似的论证和结果也适用于Dixon和Zalesskii关于素数次线性群的工作中出现的简单群PSLn(q)、PSUn(q)和PSp2n(q)的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups of prime degree and the Bateman–Horn Conjecture

As a consequence of the classification of finite simple groups, the classification of permutation groups of prime degree is complete, apart from the question of when the natural degree (qn1)/(q1) of PSLn(q) is prime. We present heuristic arguments and computational evidence based on the Bateman–Horn Conjecture to support a conjecture that for each prime n3 there are infinitely many primes of this form, even if one restricts to prime values of q. Similar arguments and results apply to the parameters of the simple groups PSLn(q), PSUn(q) and PSp2n(q) which arise in the work of Dixon and Zalesskii on linear groups of prime degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信