算子和矩阵的Moore-Penrose逆的表达式和表征

Pub Date : 2021-12-20 DOI:10.13001/ela.2023.7315
P. Morillas
{"title":"算子和矩阵的Moore-Penrose逆的表达式和表征","authors":"P. Morillas","doi":"10.13001/ela.2023.7315","DOIUrl":null,"url":null,"abstract":"Under certain conditions, we prove that the Moore-Penrose inverse of a sum of operators is the sum of the Moore-Penrose inverses. From this, we derive expressions and characterizations for the Moore-Penrose inverse of an operator that are useful for its computation. We give formulations of them for finite matrices and study the Moore-Penrose inverse of circulant matrices and of distance matrices of certain graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expressions and characterizations for the Moore-Penrose inverse of operators and matrices\",\"authors\":\"P. Morillas\",\"doi\":\"10.13001/ela.2023.7315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under certain conditions, we prove that the Moore-Penrose inverse of a sum of operators is the sum of the Moore-Penrose inverses. From this, we derive expressions and characterizations for the Moore-Penrose inverse of an operator that are useful for its computation. We give formulations of them for finite matrices and study the Moore-Penrose inverse of circulant matrices and of distance matrices of certain graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在一定条件下,我们证明了算子和的Moore-Penrose逆是Moore-Pennrose逆的和。由此,我们导出了对算子的Moore-Penrose逆的计算有用的表达式和特征。我们给出了有限矩阵的它们的公式,并研究了某些图的循环矩阵和距离矩阵的Moore-Penrose逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Expressions and characterizations for the Moore-Penrose inverse of operators and matrices
Under certain conditions, we prove that the Moore-Penrose inverse of a sum of operators is the sum of the Moore-Penrose inverses. From this, we derive expressions and characterizations for the Moore-Penrose inverse of an operator that are useful for its computation. We give formulations of them for finite matrices and study the Moore-Penrose inverse of circulant matrices and of distance matrices of certain graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信