关于COVID-19感染爆发的一些分形思考

Q1 Mathematics
Massimo Materassi
{"title":"关于COVID-19感染爆发的一些分形思考","authors":"Massimo Materassi","doi":"10.1016/j.csfx.2020.100032","DOIUrl":null,"url":null,"abstract":"<div><p>Some ideas are presented about a geometric motivation of the apparent capacity of generalized logistic equations to describe the outbreak of quite many epidemics, possibly including that of the COVID-19 infection. This interpretation pivots on the complex, possibly fractal, structure of the locus describing the “contagion event set”, and on what can be learnt from the models of trophic webs with “herd behaviour”.</p><p>Under the hypothesis that the total number of cases, as a function of time, is fitted by a solution of the Generalized Richards Model, it is argued that the exponents appearing in that differential equation, usually determined empirically, represent the geometric signature of the non-space filling, network-like locus on which contagious contacts take place.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100032","citationCount":"14","resultStr":"{\"title\":\"Some fractal thoughts about the COVID-19 infection outbreak\",\"authors\":\"Massimo Materassi\",\"doi\":\"10.1016/j.csfx.2020.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Some ideas are presented about a geometric motivation of the apparent capacity of generalized logistic equations to describe the outbreak of quite many epidemics, possibly including that of the COVID-19 infection. This interpretation pivots on the complex, possibly fractal, structure of the locus describing the “contagion event set”, and on what can be learnt from the models of trophic webs with “herd behaviour”.</p><p>Under the hypothesis that the total number of cases, as a function of time, is fitted by a solution of the Generalized Richards Model, it is argued that the exponents appearing in that differential equation, usually determined empirically, represent the geometric signature of the non-space filling, network-like locus on which contagious contacts take place.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"4 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100032\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054420300130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

摘要

提出了一些关于广义逻辑方程描述许多流行病(可能包括COVID-19感染)爆发的表观能力的几何动机的想法。这种解释基于描述“传染事件集”的位点的复杂(可能是分形的)结构,以及可以从具有“群体行为”的营养网模型中学到的东西。根据广义理查兹模型的解拟合的总病例数作为时间函数的假设,有人认为,该微分方程中出现的指数通常是经验确定的,代表了传染接触发生的非空间填充、网络状轨迹的几何特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some fractal thoughts about the COVID-19 infection outbreak

Some ideas are presented about a geometric motivation of the apparent capacity of generalized logistic equations to describe the outbreak of quite many epidemics, possibly including that of the COVID-19 infection. This interpretation pivots on the complex, possibly fractal, structure of the locus describing the “contagion event set”, and on what can be learnt from the models of trophic webs with “herd behaviour”.

Under the hypothesis that the total number of cases, as a function of time, is fitted by a solution of the Generalized Richards Model, it is argued that the exponents appearing in that differential equation, usually determined empirically, represent the geometric signature of the non-space filling, network-like locus on which contagious contacts take place.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信