{"title":"几何流体力学与无穷维牛顿方程","authors":"B. Khesin, G. Misiołek, K. Modin","doi":"10.1090/bull/1728","DOIUrl":null,"url":null,"abstract":"We revisit the geodesic approach to ideal hydrodynamics and present a related geometric framework for Newton’s equations on groups of diffeomorphisms and spaces of probability densities. The latter setting is sufficiently general to include equations of compressible and incompressible fluid dynamics, magnetohydrodynamics, shallow water systems and equations of relativistic fluids. We illustrate this with a survey of selected examples, as well as with new results, using the tools of infinite-dimensional information geometry, optimal transport, the Madelung transform, and the formalism of symplectic and Poisson reduction.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Geometric hydrodynamics and infinite-dimensional Newton’s equations\",\"authors\":\"B. Khesin, G. Misiołek, K. Modin\",\"doi\":\"10.1090/bull/1728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the geodesic approach to ideal hydrodynamics and present a related geometric framework for Newton’s equations on groups of diffeomorphisms and spaces of probability densities. The latter setting is sufficiently general to include equations of compressible and incompressible fluid dynamics, magnetohydrodynamics, shallow water systems and equations of relativistic fluids. We illustrate this with a survey of selected examples, as well as with new results, using the tools of infinite-dimensional information geometry, optimal transport, the Madelung transform, and the formalism of symplectic and Poisson reduction.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1728\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1728","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Geometric hydrodynamics and infinite-dimensional Newton’s equations
We revisit the geodesic approach to ideal hydrodynamics and present a related geometric framework for Newton’s equations on groups of diffeomorphisms and spaces of probability densities. The latter setting is sufficiently general to include equations of compressible and incompressible fluid dynamics, magnetohydrodynamics, shallow water systems and equations of relativistic fluids. We illustrate this with a survey of selected examples, as well as with new results, using the tools of infinite-dimensional information geometry, optimal transport, the Madelung transform, and the formalism of symplectic and Poisson reduction.
期刊介绍:
The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.