Patrick Brecht, Manuel Niever, Roman Kerres, Anja Ströbele, Carsten Hahn
{"title":"智能平台实验周期(SPEC):设计、分析和验证数字平台的过程","authors":"Patrick Brecht, Manuel Niever, Roman Kerres, Anja Ströbele, Carsten Hahn","doi":"10.1017/S0890060421000081","DOIUrl":null,"url":null,"abstract":"Abstract Digital platform business models are disrupting traditional business processes and reveal a new way of creating value. Current validation processes for business models are designed to assess pipeline business models. They cannot grasp the logic of digital platforms, which increasingly integrate Artificial Intelligence (AI) to ensure success. This study developed a new validation process for early market validation of digital platform business models by following the Design Science Research methodology. The designed process, the Smart Platform Experiment Cycle (SPEC), is created by combining the Four-Step Iterative Cycle of business experiments, the Customer Development Process, and the Build-Measure-Learn feedback loop of the Lean Startup approach and enriching it with the knowledge of digital platforms. It consists of five iterative steps showing the startup how to design their platform business model and corresponding experiments and how to run, measure, analyze, and learn from the outcomes and results. To assess its efficacy, applicability, and validity, SPEC was applied in the German startup GassiAlarm, a service marketplace business model. The application of SPEC revealed shortcomings in the pricing strategy and highlighted to what extent their current business model would be successful. SPEC reduces the risk of building a product or service the market deems redundant and gives insights into its success rate. More applications of the SPEC are needed to validate its robustness further and to extend it to other types of digital platform business models for improved generalization.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"209 - 225"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060421000081","citationCount":"6","resultStr":"{\"title\":\"Smart platform experiment cycle (SPEC): a process to design, analyze, and validate digital platforms\",\"authors\":\"Patrick Brecht, Manuel Niever, Roman Kerres, Anja Ströbele, Carsten Hahn\",\"doi\":\"10.1017/S0890060421000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Digital platform business models are disrupting traditional business processes and reveal a new way of creating value. Current validation processes for business models are designed to assess pipeline business models. They cannot grasp the logic of digital platforms, which increasingly integrate Artificial Intelligence (AI) to ensure success. This study developed a new validation process for early market validation of digital platform business models by following the Design Science Research methodology. The designed process, the Smart Platform Experiment Cycle (SPEC), is created by combining the Four-Step Iterative Cycle of business experiments, the Customer Development Process, and the Build-Measure-Learn feedback loop of the Lean Startup approach and enriching it with the knowledge of digital platforms. It consists of five iterative steps showing the startup how to design their platform business model and corresponding experiments and how to run, measure, analyze, and learn from the outcomes and results. To assess its efficacy, applicability, and validity, SPEC was applied in the German startup GassiAlarm, a service marketplace business model. The application of SPEC revealed shortcomings in the pricing strategy and highlighted to what extent their current business model would be successful. SPEC reduces the risk of building a product or service the market deems redundant and gives insights into its success rate. More applications of the SPEC are needed to validate its robustness further and to extend it to other types of digital platform business models for improved generalization.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"35 1\",\"pages\":\"209 - 225\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0890060421000081\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Smart platform experiment cycle (SPEC): a process to design, analyze, and validate digital platforms
Abstract Digital platform business models are disrupting traditional business processes and reveal a new way of creating value. Current validation processes for business models are designed to assess pipeline business models. They cannot grasp the logic of digital platforms, which increasingly integrate Artificial Intelligence (AI) to ensure success. This study developed a new validation process for early market validation of digital platform business models by following the Design Science Research methodology. The designed process, the Smart Platform Experiment Cycle (SPEC), is created by combining the Four-Step Iterative Cycle of business experiments, the Customer Development Process, and the Build-Measure-Learn feedback loop of the Lean Startup approach and enriching it with the knowledge of digital platforms. It consists of five iterative steps showing the startup how to design their platform business model and corresponding experiments and how to run, measure, analyze, and learn from the outcomes and results. To assess its efficacy, applicability, and validity, SPEC was applied in the German startup GassiAlarm, a service marketplace business model. The application of SPEC revealed shortcomings in the pricing strategy and highlighted to what extent their current business model would be successful. SPEC reduces the risk of building a product or service the market deems redundant and gives insights into its success rate. More applications of the SPEC are needed to validate its robustness further and to extend it to other types of digital platform business models for improved generalization.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.