Lotka-Volterra竞争扩散系统:关键竞争案例

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Alfaro, Dongyuan Xiao
{"title":"Lotka-Volterra竞争扩散系统:关键竞争案例","authors":"M. Alfaro, Dongyuan Xiao","doi":"10.1080/03605302.2023.2169936","DOIUrl":null,"url":null,"abstract":"Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lotka–Volterra competition-diffusion system: the critical competition case\",\"authors\":\"M. Alfaro, Dongyuan Xiao\",\"doi\":\"10.1080/03605302.2023.2169936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2169936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2169936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们在所谓的临界竞争情况下考虑反应扩散竞争系统。相关的ODE系统允许无限多的平衡,这使得分析变得复杂。我们首先应用相平面分析证明了最终单调行波的不存在性。接下来,我们研究了具有紧支撑初始数据的柯西问题解的大时间行为。我们不仅揭示了“更快”的物种排除了“更慢”的物种(具有已知的扩散速度),而且对溶液的轮廓进行了清晰的描述,从而揭示了一种新的凸起现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lotka–Volterra competition-diffusion system: the critical competition case
Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信