{"title":"Lotka-Volterra竞争扩散系统:关键竞争案例","authors":"M. Alfaro, Dongyuan Xiao","doi":"10.1080/03605302.2023.2169936","DOIUrl":null,"url":null,"abstract":"Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"182 - 208"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lotka–Volterra competition-diffusion system: the critical competition case\",\"authors\":\"M. Alfaro, Dongyuan Xiao\",\"doi\":\"10.1080/03605302.2023.2169936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"48 1\",\"pages\":\"182 - 208\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2169936\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2169936","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lotka–Volterra competition-diffusion system: the critical competition case
Abstract We consider the reaction-diffusion competition system in the so-called critical competition case. The associated ODE system then admits infinitely many equilibria, which makes the analysis intricate. We first prove the nonexistence of ultimately monotone traveling waves by applying the phase plane analysis. Next, we study the large time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the “faster” species excludes the “slower” one (with a known spreading speed), but also provide a sharp description of the profile of the solution, thus shedding light on a new bump phenomenon.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.