环缘品种乘积的自同构

Pub Date : 2021-01-10 DOI:10.4310/MRL.2022.v29.n2.a9
Alvaro Liendo, G. Arteche
{"title":"环缘品种乘积的自同构","authors":"Alvaro Liendo, G. Arteche","doi":"10.4310/MRL.2022.v29.n2.a9","DOIUrl":null,"url":null,"abstract":"A BSTRACT . We give an explicit description of the automorphism group of a product of complete toric varieties over an arbitrary field in terms of the respective automorphism groups of its components. More precisely, we prove that, up to permutation of isomorphic components, an automorphism of a product corresponds to a product of automorphisms of its components. We also reprove, in modern language, the classic result by Demazure describing the group-scheme of automorphisms of a complete toric variety over an arbitrary field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automorphisms of products of toric varieties\",\"authors\":\"Alvaro Liendo, G. Arteche\",\"doi\":\"10.4310/MRL.2022.v29.n2.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT . We give an explicit description of the automorphism group of a product of complete toric varieties over an arbitrary field in terms of the respective automorphism groups of its components. More precisely, we prove that, up to permutation of isomorphic components, an automorphism of a product corresponds to a product of automorphisms of its components. We also reprove, in modern language, the classic result by Demazure describing the group-scheme of automorphisms of a complete toric variety over an arbitrary field.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/MRL.2022.v29.n2.a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/MRL.2022.v29.n2.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要。本文给出了任意域上完全环变积的自同构群在其各分量的自同构群中的显式描述。更确切地说,我们证明了,直到同构分量的置换,一个乘积的自同构对应于它的分量的自同构的乘积。我们还用现代语言对Demazure描述任意域上完全环面变异体的自同构群格式的经典结果进行了修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Automorphisms of products of toric varieties
A BSTRACT . We give an explicit description of the automorphism group of a product of complete toric varieties over an arbitrary field in terms of the respective automorphism groups of its components. More precisely, we prove that, up to permutation of isomorphic components, an automorphism of a product corresponds to a product of automorphisms of its components. We also reprove, in modern language, the classic result by Demazure describing the group-scheme of automorphisms of a complete toric variety over an arbitrary field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信